document.write( "Question 1062034: Let A:\"R%5E3+-%3ER%5E2\" and B:\"R%5E2+-%3ER%5E3\", so that BA:\"R%5E3+-%3ER%5E3\". Is BA an invertible map? \n" ); document.write( "
Algebra.Com's Answer #676794 by ikleyn(52784)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "1.  Not necessary. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2.  Not if A and B are linear operators.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3.  Not as a rule.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4.  But since \"R%5E3\" and \"R%5E2\" have the same cardinality, there are (do exist) some maps A and B (highly non-linear) that BA can be invertible.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );