document.write( "Question 1061555: ~b → ~r
\n" );
document.write( "e → (f → y)
\n" );
document.write( "~(e → y)
\n" );
document.write( "f V (m V r)
\n" );
document.write( "____________
\n" );
document.write( "m V b \n" );
document.write( "
Algebra.Com's Answer #676334 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! I used to be very, very, good at these when I was in my sophomore year of engineering school (1984). I'm trying to re-educate myself in formal logic so I can be helpful. \r \n" ); document.write( "\n" ); document.write( "& = AND\r \n" ); document.write( "\n" ); document.write( "— \n" ); document.write( "1. ~b —> ~r \n" ); document.write( "2. e —> (f —> y) \n" ); document.write( "3. ~(e —> y) \n" ); document.write( "4. f V (m V r) \n" ); document.write( "— \n" ); document.write( "// start proof here \n" ); document.write( "— \n" ); document.write( " \r\n" ); document.write( "5. ~(~e V y) (3, Impl = material implication) \r\n" ); document.write( "6. ~~e & ~y (5, DM= DeMorgan's)\r\n" ); document.write( "7. ~y (6, Simp = Simplification)\r\n" ); document.write( "8. ~~e (6, Simp)\r\n" ); document.write( "9. e (8, DN = double negative)\r\n" ); document.write( "10. f—>y (9,2 MP = Modus Ponens)\r\n" ); document.write( "11. ~f (10,7 MT = Modus Tollens, same as contrapositive)\r\n" ); document.write( "12. m V r (10,4 MTP = Modus Tollendo Ponens \"affirm by denying\")\r\n" ); document.write( "+13. r Conditional (aim is to show if r is true, then b must be true)\r\n" ); document.write( "| 14. ~~r (13, DN)\r\n" ); document.write( "| 15. ~~b (14, 1 MT)\r\n" ); document.write( "| 16. b (15, DN) \r\n" ); document.write( ">14. r—>b Ends Conditional Proof \r\n" ); document.write( " 15. m V b (12,14 Substitution) Conclusion \r\n" ); document.write( "—\r\n" ); document.write( "\n" ); document.write( " |