Algebra.Com's Answer #675843 by ikleyn(52781)  You can put this solution on YOUR website! . \n" );
document.write( "In the given figure, line DB bisects the exterior angle EBA of triangle ABC. If AB = 6, BC = 10, and AC = 12, find DA.\r \n" );
document.write( "\n" );
document.write( "Image is in the link: http://prntscr.com/dhjyfn \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "1. Apply the Cosine Law and find cosine of the angle ABC:\r\n" );
document.write( "\r\n" );
document.write( " = , or\r\n" );
document.write( "\r\n" );
document.write( " = , which gives\r\n" );
document.write( "\r\n" );
document.write( " cos(ABC) = = = .\r\n" );
document.write( "\r\n" );
document.write( " In particular, the angle ABC is acute and lies in QI.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "2. The angle ABE is the supplement angle to the angle ABC.\r\n" );
document.write( " Therefore, the angle ABE is obtuse, lies in QII and cos(ABE) = -cos(ABC) = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "3. The angle ABD is the half of the angle ABE.\r\n" );
document.write( " Find cosine of the angle ABD by applying the formula of cosine of the half angle:\r\n" );
document.write( "\r\n" );
document.write( " cos(ABD) = = = = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "4. Let \"x\" be the length of the segment AD abd \"y\" be the length of the segment BD: x = |AD|, y = |BD|.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Apply the Cosine Law to the triangle ABD:\r\n" );
document.write( "\r\n" );
document.write( " = . (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Apply the Cosine Law to the triangle CBD:\r\n" );
document.write( "\r\n" );
document.write( " = . (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "5. Now solve the system of two nonlinear equations in two unknowns (1) and (2).\r\n" );
document.write( "\r\n" );
document.write( " For it, open parentheses in (2) and distract eq.(1) from eq.(2). You will get\r\n" );
document.write( "\r\n" );
document.write( " 24x + 144 = , or\r\n" );
document.write( "\r\n" );
document.write( " 24x = . (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now you have one linear equation (3) with the expressed \"x\" via \"y\", and the quadratic equation (1).\r\n" );
document.write( "\r\n" );
document.write( "It is solvable. You can solve it and obtain expressions for \"x\" and \"y\".\r\n" );
document.write( "\r\n" );
document.write( "In this way you will complete the solution and will get the answer.\r\n" );
document.write( " \n" );
document.write( " \n" );
document.write( " |