document.write( "Question 92882: I need to complete the conjecture based on the pattern that I see in this specific cases.
\n" );
document.write( "Conjecture: For any number two numbers a and b, the product of (a+b) and (a-b) is always equal to _?_
\n" );
document.write( "(2+1)*(2-1)=3=2^2-1^2 (4+2)*(4-2)=12=4^2-2^2
\n" );
document.write( "(3+2)*(3-2)=5=3^2-2^2 (6+3)*(6-3)=27=6^2-3^2 \r
\n" );
document.write( "\n" );
document.write( "I have no clue on how to do this one!!
\n" );
document.write( "Please help!!!!! \n" );
document.write( "
Algebra.Com's Answer #67584 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! For any number two numbers a and b, the product of (a+b) and (a-b) is always equal to _?_ \n" ); document.write( "(2+1)*(2-1)=3=2^2-1^2 \n" ); document.write( "(4+2)*(4-2)=12=4^2-2^2 \n" ); document.write( "(3+2)*(3-2)=5=3^2-2^2 \n" ); document.write( "(6+3)*(6-3)=27=6^2-3^2 \n" ); document.write( "(a+b)*(a-b) = a^2-b^2 \n" ); document.write( "------------ \n" ); document.write( "You could check this using FOIL. \n" ); document.write( "======================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " \n" ); document.write( " |