document.write( "Question 1060204: Using an indirect proof to solve this problem:\r
\n" ); document.write( "\n" ); document.write( "1. B ⊃ (C ⊃~B)
\n" ); document.write( "2. A ⊃ (B ⊃ C) /~A v ~ B\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thank you!\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #675232 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
The idea is to assume the complete opposite of the conclusion (statement 3). \r
\n" ); document.write( "\n" ); document.write( "Then show how that assumption leads to to a contradiction (statement 14). \r
\n" ); document.write( "\n" ); document.write( "This contradiction means that the opposite of the assumption must be true. In other words, the original conclusion is true. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLines UsedReason
1B -> (C -> ~B)
2A -> (B -> C)
:.~A v ~B
3~(~A v ~B)AIP
4~~A & ~~B3DM
5A & B4DN
6B & A5Comm
7A5Simp
8B6Simp
9C -> ~B1,8MP
10B -> C2,7MP
11B -> ~B10,9HS
12~B v ~B11MI
13~B12Taut
14B & ~B8,13Conj
15~A v ~B3-14IP
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Abbreviations/Acronyms Used\r
\n" ); document.write( "\n" ); document.write( "AIP = Assumption for Indirect Proof
\n" ); document.write( "Comm = Commutation
\n" ); document.write( "Conj = Conjunction
\n" ); document.write( "DM = De Morgan's Law
\n" ); document.write( "DN = Double Negation
\n" ); document.write( "HS = Hypothetical Syllogism
\n" ); document.write( "IP = Indirect Proof
\n" ); document.write( "MI = Material Implication
\n" ); document.write( "MP = Modus Ponens
\n" ); document.write( "Simp = Simplification
\n" ); document.write( "Taut = Tautology
\n" ); document.write( "
\n" );