document.write( "Question 1060048: For the Initial point of (1,11) and the Terminal point of (9,3), how would you find the component and magnitude? \n" ); document.write( "
Algebra.Com's Answer #675109 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Subtract the x coordinates (terminal - initial) to get \n" ); document.write( "9-1 = 8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Do the same for the y coordinates \n" ); document.write( "3-11 = -8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the component form of this vector is < 8, -8 >\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's find the magnitude now. We'll use this formula \n" ); document.write( "d = sqrt(a^2 + b^2) \n" ); document.write( "where \"sqrt\" stands for \"square root\"\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In this case, a = 8 and b = -8, so\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "d = sqrt(a^2 + b^2) \n" ); document.write( "d = sqrt(8^2 + (-8)^2) \n" ); document.write( "d = sqrt(128) \n" ); document.write( "d = sqrt(64*2) \n" ); document.write( "d = sqrt(64)*sqrt(2) \n" ); document.write( "d = 8*sqrt(2) exact form \n" ); document.write( "d = 11.3137084989848 approximate form\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The exact magnitude is 8*sqrt(2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "while the approximate magnitude is 11.3137084989848 \n" ); document.write( " \n" ); document.write( " |