document.write( "Question 1058425: Total profit P is the difference between total revenue R and total cost C. Given the following​ total-revenue and​ total-cost functions, find the total​ profit, the maximum value of the total​ profit, and the value of x at which it occurs..\r
\n" ); document.write( "\n" ); document.write( "R(x)= 1200x-(x squared)\r
\n" ); document.write( "\n" ); document.write( "C(x)= 3100+20x
\n" ); document.write( "

Algebra.Com's Answer #673478 by solve_for_x(190)\"\" \"About 
You can put this solution on YOUR website!
The profit function is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(x) = R(x) - C(x)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(x) = (1200x - x^2) - (3100 + 20x)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(x) = -x^2 + 1200x - 20x - 3100\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(x) = -x^2 + 1180x - 3100\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is the equation of a parabola that opens downward. The maximum value of the profit
\n" ); document.write( "corresponds to the vertex of the parabola.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The x-coordinate of the vertex is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = -b/2a = (-1180) / (-1*2) = 590\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The function value at the vertex is then:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(590) = -(590)^2 + 1198(590) - 3100\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P(590) = 345,000\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solution:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Total profit = -x^2 + 1180x - 3100\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Maximum profit = 345,000, at x = 590
\n" ); document.write( "
\n" );