document.write( "Question 1056801: A manufacturer can sell headphones at a price of 140- .01x dollars each. It costs 40x + 15,000 dollars to produce all of them. How many headphones should be produced to maximize profit? (application of derivative) \n" ); document.write( "
Algebra.Com's Answer #672086 by solve_for_x(190)![]() ![]() ![]() You can put this solution on YOUR website! Profit is the difference between revenue and cost.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "With a price of p = 140 - 0.01x, the sale of x headphones gives revenue of:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "R(x) = px = (140 - 0.01x)x = 140x - 0.01x^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The costs are:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "C(x) = 40x + 15000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The profit is then:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(x) = R(x) - C(x) = (140x - 0.01x^2) - (40x + 15000)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(x) = -0.01x^2 + 140x - 40x - 15000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(x) = -0.01x^2 + 100x - 15000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Taking the derivative of P(x) gives:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P'(x) = -0.01(2)x + 100\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P'(x) = -0.02x + 100\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Setting the derivative equal to 0 and solving for x then gives:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P'(x) = -0.02x + 100 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "0.02x = 100\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = 100 / 0.02\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = 5000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The maximum profit corresponds to the production of 5000 headphones. \n" ); document.write( " |