document.write( "Question 1056542: prove validity using inference rules and rules of replacement and say which rule was used at each step:
\n" );
document.write( "1)
\n" );
document.write( " 1. {X+[Y+(~(A.F)>B)]}
\n" );
document.write( " 2. (X>C)
\n" );
document.write( " 3. (Y>C)
\n" );
document.write( " 4. {~B.[Z.(~C+~C)]}
\n" );
document.write( " 5. /(F.Z)\r
\n" );
document.write( "\n" );
document.write( "2)
\n" );
document.write( " 1. (A+C)+(A+B)
\n" );
document.write( " 2. (A+(B+C))>D
\n" );
document.write( " 3. /D\r
\n" );
document.write( "\n" );
document.write( "3)
\n" );
document.write( " 1. (A>C)+(B>D)
\n" );
document.write( " 2. /(A.B)>(C+D) \n" );
document.write( "
Algebra.Com's Answer #671645 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Unless your teacher tells you otherwise, do not number\r\n" ); document.write( "the conclusion [what follows the \"/\"] until the end.\r\n" ); document.write( "It should be written out to the right of the last given \r\n" ); document.write( "premise. At least, that's the way logic is normally \r\n" ); document.write( "taught.\r\n" ); document.write( "\r\n" ); document.write( "1. X+[Y+(~(A•F) ⊃B)]\r\n" ); document.write( "2. X⊃C\r\n" ); document.write( "3. Y⊃C\r\n" ); document.write( "4. ~B•[Z•(~C+~C)] /F•Z\r\n" ); document.write( "\r\n" ); document.write( "6. Z•(~C+~C) 4, simp.\r\n" ); document.write( "7. Z•(~C) 6, taut.\r\n" ); document.write( "8. Z 7, simp.\r\n" ); document.write( "9. ~C•Z 7, comm.\r\n" ); document.write( "10. ~C 9, simp.\r\n" ); document.write( "11. ~X 2,10, MT \r\n" ); document.write( "12. ~B 4, simp.\r\n" ); document.write( "13. Y+(~(A•F)⊃B) 1,11, DS\r\n" ); document.write( "14. Y+{[~B⊃(~~(A•F)]} 13, trans.\r\n" ); document.write( "15. Y+[~B⊃(A•F)] 14, DN\r\n" ); document.write( "16. ~Y 3,10, MT \r\n" ); document.write( "17. ~B⊃(A•F) 15,16, DS\r\n" ); document.write( "18. A•F 17,12, MP\r\n" ); document.write( "19. F•A 18, comm.\r\n" ); document.write( "20. F 19, simp.\r\n" ); document.write( "21. F•Z 20,8, conj.\r\n" ); document.write( "\r\n" ); document.write( "-----------------------------------------\r\n" ); document.write( "\r\n" ); document.write( "1. (A+C)+(A+B)\r\n" ); document.write( "2. (A+(B+C))⊃D /D \r\n" ); document.write( "\r\n" ); document.write( "3. A+[C+(A+B)] 1, Assoc.\r\n" ); document.write( "4. A+[(A+B)+C] 3, Comm. \r\n" ); document.write( "5. [A+(A+B)]+C 4, Assoc.\r\n" ); document.write( "6. [(A+A)+B]+C 5, Assoc.\r\n" ); document.write( "7. (A+B)+C 6, taut.\r\n" ); document.write( "8. A+(B+C) 7, Assoc.\r\n" ); document.write( "9. D 2,8, MP \r\n" ); document.write( "\r\n" ); document.write( "Two problems is the limit.\r\n" ); document.write( "\r\n" ); document.write( "Edwin\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |