document.write( "Question 1056313: Given that sin(A-B)/cos(A+B) = 1/3[tan(A-B)],
\n" );
document.write( "(i) show that the value of tanAtanB = -1/2
\n" );
document.write( "(ii) find the values of cosB if sinA = 1/2. \n" );
document.write( "
Algebra.Com's Answer #671633 by htmentor(1343)![]() ![]() You can put this solution on YOUR website! (i) Using sum and difference identities, we can write sin(A-B)/cos(A+B) as: \n" ); document.write( "(sinAcosB - cosAsinB)/(cosAcosB - sinAsinB) \n" ); document.write( "If we divide top and bottom by cosAcosB we are left with: \n" ); document.write( "(tanA - tanB)/(1 - tanAtanB) \n" ); document.write( "And we are told this expression is equal to 1/3[tan(A-B)] \n" ); document.write( "Using a difference identity for tan(A-B), and equating both sides we have: \n" ); document.write( "(tanA - tanB)/(1 - tanAtanB) = (tanA - tanB)/(1-tanAtanB) = (1/3)[(tanA - tanB)/(1 + tanAtanB)] \n" ); document.write( "Solve for tanAtanB: \n" ); document.write( "3(1+tanAtanB) = 1 - tanAtanB \n" ); document.write( "tanAtanB = -1/2 \n" ); document.write( "To solve (ii), we use the information already given \n" ); document.write( "From (i) we know that tanAtanB = -1/2 -> tanB = -1/(2tanA) \n" ); document.write( "since tanAtanB = sinAsinB/cosAcosB = -1/2, and we are given sinA = 1/2 \n" ); document.write( "[I'm stuck on this one at the moment...]\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |