document.write( "Question 1055889: A open top rectangular container with a square base has to be manufactured of metal plate .the volume of the container should be 62,5m^3.determine the dimensions of the container That will yield a minimum surface area. \n" ); document.write( "
Algebra.Com's Answer #671064 by josgarithmetic(39618)\"\" \"About 
You can put this solution on YOUR website!
Bottom of x by x, and height of y.
\n" ); document.write( "S, the surface area for the five sides.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"system%28S=x%5E2%2B4xy%2Cx%5E2%2Ay=62.5%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=62.5%2Fx%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Substitute into S.
\n" ); document.write( "\"S=x%5E2%2B4x%2862.5%29%2Fx%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"S=x%5E2%2B4%2A62.5%2Fx\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"S=x%5E2%2B4%2A62.5%2Ax%5E%28-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"dS%2F%28dx%29=2x%2B4%2A62.5%28-1%29x%5E%28-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"dS%2Fdx=2x-250%2Fx%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"dS%2Fdx=%282x%5E3-250%29%2Fx%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"highlight_green%28%282x%5E3-250%29%2Fx%5E2=0%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E3-250=0\"\r
\n" ); document.write( "\n" ); document.write( "\"2x%5E3=250\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E3=125\"\r
\n" ); document.write( "\n" ); document.write( "\"highlight%28x=5%29\"
\n" ); document.write( "Bottom square dimensions each are 5 units.
\n" ); document.write( "-
\n" ); document.write( "\"y=62.5%2F5%5E2\"
\n" ); document.write( "\"highlight%28y=2.5%29\"
\n" ); document.write( "The height is 2.5 units, to make box have its maximum surface area.
\n" ); document.write( "
\n" );