document.write( "Question 92078This question is from textbook Algebra and Trigonometry
\n" ); document.write( ": please help me solve this quadratic equation, Solve using completing the square, 3x^2 - 6x = 27\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #66922 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"3%28x%5E2-2x%29=27\" Factor out the leading coefficient 3. This step is important since we want the \"x%5E2\" coefficient to be equal to 1.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Take half of the x coefficient -2 to get -1 (ie \"-2%2F2=-1\")\r
\n" ); document.write( "\n" ); document.write( "Now square -1 to get 1 (ie \"%28-1%29%5E2=1\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%28x%5E2-2x%2B1%29=27\" Add this result (1) to the expression \"x%5E2-2x\" inside the parenthesis\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%28x%5E2-2x%2B1%29=27%2B1%283%29\" Add 1(3) to the other side (remember we factored out a 3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the left side is a complete square\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%28x-1%29%5E2=27%2B1%283%29\" Factor \"x%5E2-2x%2B1\" into \"%28x-1%29%5E2\" (note: if you need help with factoring, check out this solver)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%28x-1%29%5E2=27%2B3\" Multiply 1 and 3 to get 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%28x-1%29%5E2=30\" Combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-1%29%5E2=10\" Divide both sides by 3\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x-1=0%2B-sqrt%2810%29\" Take the square root of both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=1%2B-sqrt%2810%29\" Add 1 to both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the expression breaks down to\r
\n" ); document.write( "\n" ); document.write( "\"x=1%2Bsqrt%2810%29\" or \"x=1-sqrt%2810%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answer is approximately\r
\n" ); document.write( "\n" ); document.write( "\"x=4.16227766016838\" or \"x=-2.16227766016838\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here is visual proof\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+500%2C+500%2C+-10%2C+10%2C+-10%2C+10%2C+3x%5E2-6x-27%29+\" graph of \"y=3x%5E2-6x-27\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "When we use the root finder feature on a calculator, we would find that the x-intercepts are \"x=4.16227766016838\" and \"x=-2.16227766016838\", so this verifies our answer.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );