document.write( "Question 1052975: Which number who divided by 7,9,11and remainder 1,2,3? \n" ); document.write( "
Algebra.Com's Answer #668284 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Let x be this unknown number that satisfies all three conditions given. For the sake of simplicity, we'll assume x is positive. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the Chinese Remainder Theorem\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I will use the same basic steps and notation as that PDF is showing. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have these 3 congruences given
\n" ); document.write( "x = 1 (mod 7)
\n" ); document.write( "x = 2 (mod 9)
\n" ); document.write( "x = 3 (mod 11)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The \"a%5Bi%5D\" values are the right hand side values (1, 2 and 3 respectively) where 'i' refers to the modulus value
\n" ); document.write( "\"a%5B7%5D+=+1\"
\n" ); document.write( "\"a%5B9%5D+=+2\"
\n" ); document.write( "\"a%5B11%5D+=+3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Multiply out the modulus values
\n" ); document.write( "N = 7*9*11 = 693\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Calculate the \"M%5Bi%5D\" values
\n" ); document.write( "\"M%5B7%5D+=+N%2F7+=+693%2F7+=+99\"
\n" ); document.write( "\"M%5B9%5D+=+N%2F9+=+693%2F9+=+77\"
\n" ); document.write( "\"M%5B11%5D+=+N%2F11+=+693%2F11+=+63\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then finally we need to compute the multiplicative inverses \"y%5Bi%5D\" values of each \"M%5Bi%5D\" value\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5B7%5D+=+%28M%5B7%5D%29%5E%28-1%29+=+%2899%29%5E%28-1%29+=+1\" (mod 7)
\n" ); document.write( "Note: 99 = 1 (mod 7) so the solution to 1y = 1 (mod 7) is y = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5B9%5D+=+%28M%5B9%5D%29%5E%28-1%29+=+%2877%29%5E%28-1%29+=+2\" (mod 9)
\n" ); document.write( "Note: 77 = 5 (mod 9). The solution to 5y = 1 (mod 9) is y = 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5B11%5D+=+%28M%5B11%5D%29%5E%28-1%29+=+%2863%29%5E%28-1%29+=+7\" (mod 11)
\n" ); document.write( "Note: 63 = 8 (mod 11) and the solution to 8y = 1 (mod 11) is y = 7\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now we use the information computed above to get the solution for x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " (mod 693)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+1%2A99%2A1+%2B+2%2A77%2A2+%2B+3%2A63%2A7\" (mod 693)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+1730\" (mod 693)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x+=+344\" (mod 693)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The smallest positive solution for x is 344\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The set of all solutions for x is the set of x values such that \"x+=+693t%2B344\" where \"t%3E=0\" and \"t\" is an integer. In other words, x = 344 (mod 693)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );