document.write( "Question 1052325: Find the range of values of 'c' such that the two lines
\n" );
document.write( "x - y = 2 and cx + y = 3 intersect in the first quadrant. \n" );
document.write( "
Algebra.Com's Answer #667702 by Edwin McCravy(20060)![]() ![]() You can put this solution on YOUR website! Find the range of values of 'c' such that the two lines \n" ); document.write( "x - y = 2 and cx + y = 3 intersect in the first quadrant. \n" ); document.write( " All points in the first quadrant have both\r\n" ); document.write( "their x and y coordinates positive.\r\n" ); document.write( "\r\n" ); document.write( " x - y = 2\r\n" ); document.write( " cx + y = 3\r\n" ); document.write( "\r\n" ); document.write( "Adding the two equations term by term:\r\n" ); document.write( "\r\n" ); document.write( " x + cx = 5\r\n" ); document.write( " x(1+c) = 5\r\n" ); document.write( " x = 5/(1+c)\r\n" ); document.write( "\r\n" ); document.write( "This must be positive, so 1+c > 0 or c > -1\r\n" ); document.write( "\r\n" ); document.write( "Substitute in the first:\r\n" ); document.write( "\r\n" ); document.write( " x - y = 2\r\n" ); document.write( " -y = 2 - x\r\n" ); document.write( " y = -2 + x\r\n" ); document.write( " y = -2 + 5/(1+c)\r\n" ); document.write( " y = -2(1+c)/(1+c) + 5/(1+c)\r\n" ); document.write( " y = (-2-2c)/(1+c) + 5/(1+c)\r\n" ); document.write( " y = (-2-2c+5)/(1+c)\r\n" ); document.write( " y = (3-2c)/(1+c)\r\n" ); document.write( "\r\n" ); document.write( "This must be positive\r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( " |