document.write( "Question 1051603: An emergency flare is launched from platform and its height h in metres after t seconds is given by the equation h =-4.9t^2 + 78.4t + 11.3\r
\n" ); document.write( "\n" ); document.write( "a)What is the maximum height of the flare?\r
\n" ); document.write( "\n" ); document.write( "b) after how many seconds does the flare reach the maximum height?\r
\n" ); document.write( "\n" ); document.write( "c) when will the flare hit the ground below?\r
\n" ); document.write( "\n" ); document.write( "d) determine the height of the platform\r
\n" ); document.write( "\n" ); document.write( "My attempt
\n" ); document.write( "a) -4.4(x-8)^2+324.9\r
\n" ); document.write( "\n" ); document.write( "b) 11.3 seconds
\n" ); document.write( "

Algebra.Com's Answer #667073 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
h =-4.9t^2 + 78.4t + 11.3
\n" ); document.write( "h = -4.9(t-8)^2 + 4.9(64) + 11.3
\n" ); document.write( "h = -4.9(t-8)^2 + 313.6 + 11.3
\n" ); document.write( "h = -4.9(t-8)^2 + 324.9 Good Work
\n" ); document.write( "Parabola opening downward V(8, 324.9)
\n" ); document.write( "a) maximum height = 324.9m
\n" ); document.write( "b) after how many seconds does the flare reach the maximum height: t = 8sec
\n" ); document.write( "c) when will the flare hit the ground below? h = 0
\n" ); document.write( "0 =-4.9(t-8)^2 + 324.9
\n" ); document.write( "4.9(t-8)^2 = 324.9
\n" ); document.write( "(t-8)^2 = 324.9/4.9
\n" ); document.write( "t = \"sqrt%28324.9%2F4.9%29+%2B+8+\"
\n" ); document.write( "d) determine the height of the platform:
\n" ); document.write( "h =-4.9t^2 + 78.4t + 11.3
\n" ); document.write( "t = 0, the height of the platform is 11.3m
\n" ); document.write( "
\n" );