document.write( "Question 1051320: Use the given zero to find the remaining zeros of the polynomial function. (Enter your answers as a comma-separated list.)
\n" );
document.write( "P(x) = x^3 + 11x^2 + x + 11; -i \n" );
document.write( "
Algebra.Com's Answer #666848 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The first thing you need is that complex zeros always appear in conjugate pairs. So write the given zero in complex number, \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since this is a binomial conjugate pair, their product is the difference of two squares. Remember that \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use polynomial long division to divide the original polynomial function by \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " x + 11\r\n" ); document.write( " -----------------------------\r\n" ); document.write( "x^2 + 0x + 1 | x^3 + 11x^2 + x + 11\r\n" ); document.write( " x^3 0x^2 + x\r\n" ); document.write( " --------------------------\r\n" ); document.write( " 11x^2 + 0x + 11\r\n" ); document.write( " 11x^2 + 0x + 11\r\n" ); document.write( " -------------------\r\n" ); document.write( " 0\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "So the third and final factor is \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "By the way, saying x2 or x3 to mean x squared or x cubed is confusing. Use the caret mark (^) to indicate raising to a power, such as x^5 or e^x, which we all understand to mean \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " ![]() \n" ); document.write( " |