document.write( "Question 1050433: Prove that if k is an integer then (4k+1)i^4k + (4k+2)i^4k+1 + (4k+3)i^4k+2 + (4k+4)i^4k+3= 2-2i.
\n" ); document.write( "Use this to prove that
\n" ); document.write( "1+2i+3i^2+4i^3+...+1995i^1994+1996i^1995=-998-998i
\n" ); document.write( "

Algebra.Com's Answer #666209 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
\"i%5E%284k%29+=+%28i%5E4%29%5Ek+=+1%5Ek+=+1\"
\n" ); document.write( "===>\"i%5E%284k%2B1%29+=+i\",
\n" ); document.write( "\"i%5E%284k%2B2%29+=+-1\", and
\n" ); document.write( "\"i%5E%284k%2B3%29+=+-i\".\r
\n" ); document.write( "\n" ); document.write( "===> \r
\n" ); document.write( "\n" ); document.write( "= \r
\n" ); document.write( "\n" ); document.write( "= \"-2+-+2i\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now substitute the values of k = 0, 1, 2, 3,...,497, 498 into the formula.\r
\n" ); document.write( "\n" ); document.write( "On the left side of the equation, we would get\r
\n" ); document.write( "\n" ); document.write( "\"1%2B2i%2B3i%5E2%2B4i%5E3\"+...+\"1995i%5E1994%2B1996i%5E1995\", \r
\n" ); document.write( "\n" ); document.write( "while on the right side, we would get\r
\n" ); document.write( "\n" ); document.write( "499*(-2 - 2i) = -998 - 998i.\r
\n" ); document.write( "\n" ); document.write( "Therefore,\r
\n" ); document.write( "\n" ); document.write( "\"1%2B2i%2B3i%5E2%2B4i%5E3\"+...+\"1995i%5E1994%2B1996i%5E1995+=+-998-998i\".\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );