document.write( "Question 1050626: i am having trouble with theese 2\r
\n" ); document.write( "\n" ); document.write( "1: y = g(x) = -2x^2 - 6x\r
\n" ); document.write( "\n" ); document.write( "2: The demand function for an electronics company's laptop computer line is p = 2400 - 6q , where p is the price (in dollars) per unit when q units are demanded (per week. Find the level of production that maximizes the manufacturer's total revenue and determine this revenue.
\n" ); document.write( "

Algebra.Com's Answer #666205 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
1. g(x) = -2x^2 - 6x
\n" ); document.write( "Completing Square:
\n" ); document.write( "g(x) = -2(x^2 - 3x)
\n" ); document.write( "g(x) = -2(x^2 - 3x + (3/2)^2) + 2(3/2)^2
\n" ); document.write( "g(x) = -2(x - 3/2)^2 + 9/2
\n" ); document.write( "|
\n" ); document.write( "Revenue functions R(x) = px where p is a function of x (price p at x produced, for ex.)
\n" ); document.write( "2.
\n" ); document.write( "p = 2400 - 6q
\n" ); document.write( "R(q) = (2400-6q)q
\n" ); document.write( "R(q) = -6q^2)+ 2400q
\n" ); document.write( "Completing Square:
\n" ); document.write( "R(q) = -6(q^2 - 400q)
\n" ); document.write( "R(q) = -6(q^2 - 400q + 200^2)+ 6(200^2)
\n" ); document.write( "R(q) = -6(q - 200)^2 + 6(200^2) Parabola Opening Downward V(200, 240,000)
\n" ); document.write( "q = 200 maximizes Revenue = $240,000\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );