document.write( "Question 1049435: The distinct real numbers x and y satisfy x^2=33y+907 and y^2=33x+907. Find x and y. \n" ); document.write( "
Algebra.Com's Answer #665039 by ikleyn(52866) You can put this solution on YOUR website! . \n" ); document.write( "The distinct real numbers x and y satisfy x^2=33y+907 and y^2=33x+907. Find x and y. \n" ); document.write( "~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "x^2 = 33y + 907, (1)\r\n" ); document.write( "y^2 = 33x + 907. (2)\r\n" ); document.write( "\r\n" ); document.write( "Distract eq.(2) from eq.(1) (both sides). You will get\r\n" ); document.write( "\r\n" ); document.write( "x^2 - y^2 = 33y - 33x, or\r\n" ); document.write( "\r\n" ); document.write( "(x-y)*(x+y) = -33(x-y).\r\n" ); document.write( "\r\n" ); document.write( "Since the numbers are distinct, you can divide both sides of the last equation by (x-y). Then you get\r\n" ); document.write( "\r\n" ); document.write( "x + y = -33. (3)\r\n" ); document.write( "\r\n" ); document.write( "Now express x = -33-y from (3) and substitute it into (2). You will get\r\n" ); document.write( "\r\n" ); document.write( "y^2 = 33(-33-y) + 907, or\r\n" ); document.write( "\r\n" ); document.write( "y^2 + 33y + 182 = 0.\r\n" ); document.write( "\r\n" ); document.write( "Solve this quadratic equation using the quadratic formula.\r\n" ); document.write( "\r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |