document.write( "Question 1048633: Determine the value(s) of k such that the circle x^2+(y-6)^2 = 36 and the parabola x^2 = 4ky will intersect only at the origin. \n" ); document.write( "
Algebra.Com's Answer #664229 by ikleyn(52788)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Determine the value(s) of k such that the circle x^2+(y-6)^2 = 36 and the parabola x^2 = 4ky will intersect only at the origin. \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "See an illustration below for k = 3, 2, and 4.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The circle \n" ); document.write( "and three parabolas x^2 = 4ky for k=3 (blue), k=2, and k=4. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The circle \n" ); document.write( "and three parabolas x^2 = 4ky for k=3 (blue), k=2, and k=4. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For solution of similar problems see the lesson\r \n" ); document.write( "\n" ); document.write( " - Solving systems of algebraic equations of degree 2 \r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-I in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-I - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |