document.write( "Question 1047093: any number of the form \"abcabc\" must be divisible by which of the following:
\n" );
document.write( "(1)8
\n" );
document.write( "(2)7,13,11
\n" );
document.write( "(3)9 \n" );
document.write( "
Algebra.Com's Answer #662579 by ikleyn(52807)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "any number of the form \"abcabc\" must be divisible by which of the following: \n" ); document.write( "(1) 8 \n" ); document.write( "(2) 7,13,11 \n" ); document.write( "(3) 9 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. Any number of the form \"abcabc\" is equal to 1001*N, where N = \"abc\", a 3-digit number written with the digits \"a\", \"b\" and \"c\".\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "2. The number 1001 is divisible by 7, 11 and 13.\r\n" ); document.write( " ( Actually, 1001 = 7*11*13. )\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "3. Therefore, any number of the form \"abcabc\" is divisible by 7, 11 and 13.\r\n" ); document.write( "\r\n" ); document.write( " The answer is: Option 2).\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |