document.write( "Question 1046276: Prove that:
\n" );
document.write( "cos(2π/7)+cos(4π/7)+cos(8π/7)= - 1/2 \n" );
document.write( "
Algebra.Com's Answer #661861 by ikleyn(52847)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Prove that: \n" ); document.write( "cos(2pi/7)+cos(4pi/7)+cos(8pi/7)= - 1/2 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Imagine the unit circle on a coordinate plane with the center O at the origin of the coordinate system.\r\n" ); document.write( "Imagine that the regular 7-sided polygon ABCDEFG with the center at the point O \r\n" ); document.write( "is inscribed into this circle in a way that one its vertex is located at the point A = (1,0).\r\n" ); document.write( "\r\n" ); document.write( "Then the other 6 vertices are the points\r\n" ); document.write( "\r\n" ); document.write( "#2, B: (cos( 2pi/7), sin( 2pi/7))\r\n" ); document.write( "#3, C: (cos( 4pi/7), sin( 4pi/7))\r\n" ); document.write( "#4, D: (cos( 6pi/7), sin( 6pi/7))\r\n" ); document.write( "#5, E: (cos( 8pi/7), sin( 8pi/7))\r\n" ); document.write( "#6, F: (cos(10pi/7), sin(10pi/7))\r\n" ); document.write( "#7, G: (cos(12pi/7), sin(12pi/7))\r\n" ); document.write( "\r\n" ); document.write( "listed in the anticlockwise order.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "1. First of all, it is clear that the x-coordinates of the points D and E are the same: cos( 6pi/7) = cos( 8pi/7).\r\n" ); document.write( "\r\n" ); document.write( " So, we can consider the equal sum cos(2pi/7)+cos(4pi/7)+cos(6pi/7) instead of cos(2pi/7)+cos(4pi/7)+cos(8pi/7).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "2. From symmetry, it is clear that the sum of vectors OA + OB + OC + OD + OE + OF + OG is equal to zero:\r\n" ); document.write( "\r\n" ); document.write( " OA + OB + OC + OD + OE + OF + OG = 0.\r\n" ); document.write( "\r\n" ); document.write( " It is so obvious that I will omit the proof of this fact.\r\n" ); document.write( "\r\n" ); document.write( " It gives us the equality\r\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( " 1 + cos(2pi/7)+cos(4pi/7)+cos(6pi/7)+cos(8pi/7)+cos(10pi/7)+cos(12pi/7) = 0. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Notice that \"1\", the first addend, is x-coordinate of the point A.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "3. From symmetry, it is also clear that the x-coordinates of the pairs of the points B and G; C and F; D and E are the same:\r\n" ); document.write( "\r\n" ); document.write( " cos(2pi/7) = cos(12pi/7); cos(4pi/7) = cos(10pi/7); cos(6pi/7) = cos(8pi/7).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Therefore, we can re-write the sum (1) in the form\r\n" ); document.write( "\r\n" ); document.write( " 2*(cos(2pi/7)+cos(4pi/7)+cos(6pi/7)) = -1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "4. Now all that we need to do is to divide both sides of (2) by 2, and we will get \r\n" ); document.write( "\r\n" ); document.write( " cos(2pi/7)+cos(4pi/7)+cos(6pi/7) =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |