document.write( "Question 1045845: Solve the inequality and express the solution in terms of intervals whenever possible. (I forgot how to get common denominator)
\n" ); document.write( "(1/x-2) >= (3/x+1)\r
\n" ); document.write( "\n" ); document.write( "(1/x-2) – (3/x+1) >=0
\n" ); document.write( "

Algebra.Com's Answer #661435 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "<===> \"%28-2x%2B7%29%2F%28%28x-2%29%28x%2B1%29%29+%3E=+0++\".\r
\n" ); document.write( "\n" ); document.write( "===> The critical values of this inequality are -1, 2, and 7/2.\r
\n" ); document.write( "\n" ); document.write( "The expression \"%28-2x%2B7%29%2F%28%28x-2%29%28x%2B1%29%29+\" is \r
\n" ); document.write( "\n" ); document.write( "--non-negative over (\"-infinity\", -1);\r
\n" ); document.write( "\n" ); document.write( "--negative over (-1,2);\r
\n" ); document.write( "\n" ); document.write( "--non-negative over (2,7/2];\r
\n" ); document.write( "\n" ); document.write( "--negative over (7/2, \"infinity\").\r
\n" ); document.write( "\n" ); document.write( "Therefore the solution set is (\"-infinity\", -1)∪(2,7/2].
\n" ); document.write( "
\n" );