document.write( "Question 1045663: 3. Let f(x) =x + 2p if x < −2, 3px + q if −2 ≤ x ≤ 1, 3x−2q if x > 1. Determine the values of p and q that make f continuous \n" ); document.write( "
Algebra.Com's Answer #661141 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
The limit of the function from the left of x = -2 should be equal to the limit of the function from the right of x = -2.
\n" ); document.write( "Upon substitution these give\r
\n" ); document.write( "\n" ); document.write( "-2 + 2p = 3p*-2+q <===> -2 + 2p = -6p + q <===> q = 8p - 2 <---Equation A\r
\n" ); document.write( "\n" ); document.write( "Similarly, The limit of the function from the left of x = 1 should be equal to the limit of the function from the right of x = 1.
\n" ); document.write( "Upon substitution these give\r
\n" ); document.write( "\n" ); document.write( "3p +q = 3-2q <===> 3p + 3q = 3 <===> p + q = 1 <---Equation B\r
\n" ); document.write( "\n" ); document.write( "After substituting Equation A into Equation B, we get\r
\n" ); document.write( "\n" ); document.write( "p + 8p - 2 = 1 ===> 9p = 3 ===> \"highlight%28p+=+1%2F3%29\", and hence \"highlight%28q+=+2%2F3%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );