document.write( "Question 1045405: A set X with n(x)=525 is partitioned into subsets X_1, X_2, X_3, X_4, X_5, X_6. If n(X_1)=n(X_2)=n(X_3), n(X_4)=n(X_5)=n(X_6) and n(X_1)=6n(X_4), find n(X_1) \n" ); document.write( "
Algebra.Com's Answer #660820 by ikleyn(52906) You can put this solution on YOUR website! . \n" ); document.write( "A set X with n(x)=525 is partitioned into subsets X_1, X_2, X_3, X_4, X_5, X_6. \n" ); document.write( "If n(X_1)=n(X_2)=n(X_3), n(X_4)=n(X_5)=n(X_6) and n(X_1)=6n(X_4), find n(X_1) \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Let n(X_4) = n for brevity.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then n(X_1) = n(X_2) = n(X_3) = 6n,\r\n" ); document.write( "\r\n" ); document.write( " n(X_4) = n(X_5) = n(X_6) = n.\r\n" ); document.write( "\r\n" ); document.write( "Hence, you have an equation\r\n" ); document.write( "\r\n" ); document.write( "3n + 3*(6n) = 525, or\r\n" ); document.write( "\r\n" ); document.write( "21n = 525.\r\n" ); document.write( "\r\n" ); document.write( "It implies n = \n" ); document.write( " \n" ); document.write( " |