document.write( "Question 1045199: Two vertices of an equilateral triangle are (10,-4) and (0,6). Find the third vertex \n" ); document.write( "
Algebra.Com's Answer #660598 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! Two vertices of an equilateral triangle are (10,-4) and (0,6). Find the third vertex \n" ); document.write( "------------- \n" ); document.write( "Label the points A(10,-4) and B(0,6) \n" ); document.write( "Find the length of AB and the midpoint, label it M \n" ); document.write( "--- \n" ); document.write( "Length of AB = sqrt(diffy^2 + diffx^2) = sqrt(100+100) = 10sqrt(2) \n" ); document.write( "--- \n" ); document.write( "Find the average of x & y separately. \n" ); document.write( "(10+0)/2 = 5 \n" ); document.write( "(-4+6)/2 = 1 \n" ); document.write( "M(5,1) \n" ); document.write( "----- \n" ); document.write( "Find the equation of the perpendicular bisector. \n" ); document.write( "Slope of AB = 10/-10 = -1 \n" ); document.write( "Slope m of the perpendicular bisector = +1 \n" ); document.write( "--> y-1 = 1*(x-5) \n" ); document.write( "y = x-4 \n" ); document.write( "------- \n" ); document.write( "There are 2 vertices, C & D, both are on the line y = x-4 \n" ); document.write( "-- \n" ); document.write( "The altitude of the triangle is 10. \n" ); document.write( "Find the 2 points on y = x-4 10 units distance from M(5,1) \n" ); document.write( "--- \n" ); document.write( "d^2 = diffx^2 + diffy^2 \n" ); document.write( "100 = (x-5)^2 + (y-1)^2 \n" ); document.write( "Sub for y \n" ); document.write( "100 = (x-5)^2 + (x-5)^2 \n" ); document.write( "(x-5)^2 = 50 \n" ); document.write( "x-5 = ħsqrt(50) \n" ); document.write( "--- \n" ); document.write( "x = 5 + sqrt(50), y = 1 + sqrt(50) --> Vertex C \n" ); document.write( "x = 5 - sqrt(50), y = 1 - sqrt(50) --> Vertex D \n" ); document.write( " \n" ); document.write( " |