Algebra.Com's Answer #659809 by Edwin McCravy(20059)  You can put this solution on YOUR website! Question 1044336 \n" );
document.write( "Give the coordinates of the center, foci, and covertices \n" );
document.write( "of the ellipse with equation \r \n" );
document.write( "\n" );
document.write( "Express the equation of the ellipse in standard form. \n" );
document.write( "Then, give the coordinates of the center, vertex, the \n" );
document.write( "foci, and the endpoints of the latus rectum. Draw the \n" );
document.write( "ellipse, its foci, and directrices.\r \n" );
document.write( "\n" );
document.write( "3x²+7y²-12x-28y+19 = 0\r \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Rearrange\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Factor out coefficients of squared letters:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "To complete the squares, we need to add a number to the \r\n" );
document.write( "end of each parentheses, and to the right side:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "so we put a blank where we need to add numbers.\r\n" );
document.write( "\r\n" );
document.write( "To complete the square in the first parentheses:\r\n" );
document.write( "\r\n" );
document.write( "1. Multiply the coefficient of x by :\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "2. Square that result:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "3. Put that where the first blank is on the left side:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "So we complete the square in the first parentheses by\r\n" );
document.write( "adding +4 inside the first parentheses\r\n" );
document.write( "which actually amounts to adding 3*4 or 12 to the left \r\n" );
document.write( "side because there is a 3 in front of the parentheses, so\r\n" );
document.write( "we must add 12 to the right side:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "To complete the square in the second parentheses, since the \r\n" );
document.write( "coefficient of y in the second parentheses is the same as the \r\n" );
document.write( "coefficient of x in the first parentheses, we also put +4 in\r\n" );
document.write( "second blank on the left as well.\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "Since we complete the square in the second parentheses by adding +4 \r\n" );
document.write( "inside the second parentheses, that actually amounts to adding 7*4 \r\n" );
document.write( "or 28 to the left side because there is a 7 in front of the \r\n" );
document.write( "parentheses, so we must add 28 to the right side, so we put 28\r\n" );
document.write( "in the remaining blank on the right side:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "We factor both parentheses as perfect squares of binomials,\r\n" );
document.write( "and combine the numbers on the right side:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Get a 1 on the right by dividing through by 21\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Simplify. \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Since the largest denominator is under the term in\r\n" );
document.write( "x, the ellipse has a horizontal major axis. So we\r\n" );
document.write( "compare it to:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " , , \r\n" );
document.write( "\r\n" );
document.write( " so \r\n" );
document.write( "\r\n" );
document.write( " so \r\n" );
document.write( "\r\n" );
document.write( "Its center is at (h,k) = (2,2)\r\n" );
document.write( "\r\n" );
document.write( "Plot the center (2,2):\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "Draw the major axis units both left and right\r\n" );
document.write( "of the center.\r\n" );
document.write( "Draw the minor axis units both above and below\r\n" );
document.write( "the center.\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "The vertices are units right and left the center (2,2)\r\n" );
document.write( "\r\n" );
document.write( "So we add to the x-coordinate of the center. So the \r\n" );
document.write( "right vertex is \r\n" );
document.write( "\r\n" );
document.write( "And we subtract from the y-coordinate of the center. So the \r\n" );
document.write( "left vertex is \r\n" );
document.write( "\r\n" );
document.write( "The covertices are units above and below the center (2,2)\r\n" );
document.write( "\r\n" );
document.write( "So we add to the y-coordinate of the center. So the \r\n" );
document.write( "upper covertex is .\r\n" );
document.write( "\r\n" );
document.write( "And we subtract from the y-coordinate of the center. \r\n" );
document.write( "So the lower covertex is .\r\n" );
document.write( "\r\n" );
document.write( "Sketch in the ellipse:\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "To find the foci, we must calculate c, using the Pythagorean\r\n" );
document.write( "relationship \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "The foci are units above and below the \r\n" );
document.write( "center (2,2)\r\n" );
document.write( "\r\n" );
document.write( "So we add to the x-coordinate of the center\r\n" );
document.write( "\r\n" );
document.write( "So the right focus is (4,2)\r\n" );
document.write( "\r\n" );
document.write( "And we subtract from the x-coordinate of \r\n" );
document.write( "the center.\r\n" );
document.write( "\r\n" );
document.write( "So the left focus is (0,2)\r\n" );
document.write( "\r\n" );
document.write( "We plot the two foci:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( ")}}}\r\n" );
document.write( "\r\n" );
document.write( "Finally we draw in the two latus rectums:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "To find the endpoints of the two latus rectums, we substitute\r\n" );
document.write( "the x-coordinates of the foci in the original equation:\r\n" );
document.write( "\r\n" );
document.write( "3x²+7y²-12x-28y+19 = 0\r\n" );
document.write( "\r\n" );
document.write( "Substituting x=0, the x-coordinate of the left focus:\r\n" );
document.write( "\r\n" );
document.write( "3(0)²+7y²-12(0)-28y+19 = 0\r\n" );
document.write( "\r\n" );
document.write( "7y²-28y+19 = 0\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "So the endpoints of the left latus rectum are\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "By symmetry, the endpoints of the right latus rectum are\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "To find the directrices, we determine the eccentricity e\r\n" );
document.write( "by the formula \r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "\r\n" );
document.write( "The distance from the focus to the endpoint of the latus rectum is \r\n" );
document.write( "So the above becomes:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "Take reciprocals of both sides:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "Multiply both sides by \r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "To find the right directrix, we add to the x-coordinate of\r\n" );
document.write( "the right focus and get or or 7.5. So the\r\n" );
document.write( "right directrix is the vertical line whose equation is .\r\n" );
document.write( "\r\n" );
document.write( "To find the left directrix, we subtract to the x-coordinate of\r\n" );
document.write( "the left focus and get or or -3.5. So the\r\n" );
document.write( "left directrix is the vertical line whose equation is .\r\n" );
document.write( "They are the blue lines below:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Edwin \n" );
document.write( " |