document.write( "Question 1044354: Express the equation of the ellipse in standard form. Then,
\n" ); document.write( "give the coordinates of the center, vertex, the foci, and
\n" ); document.write( "the endpoints of the latus rectum. Draw the ellipse, its
\n" ); document.write( "foci, and directrices.\r
\n" ); document.write( "\n" ); document.write( "* 3x²+7y²-12x-28y+19=0
\n" ); document.write( "

Algebra.Com's Answer #659809 by Edwin McCravy(20059)\"\" \"About 
You can put this solution on YOUR website!
Question 1044336
\n" ); document.write( "Give the coordinates of the center, foci, and covertices
\n" ); document.write( "of the ellipse with equation \r
\n" ); document.write( "\n" ); document.write( "Express the equation of the ellipse in standard form.
\n" ); document.write( "Then, give the coordinates of the center, vertex, the
\n" ); document.write( "foci, and the endpoints of the latus rectum. Draw the
\n" ); document.write( "ellipse, its foci, and directrices.\r
\n" ); document.write( "\n" ); document.write( "3x²+7y²-12x-28y+19 = 0\r
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Rearrange\r\n" );
document.write( "\r\n" );
document.write( "\"3x%5E2-12x%2B7y%5E2-28y=-19\"\r\n" );
document.write( "\r\n" );
document.write( "Factor out coefficients of squared letters:\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x%5E2-4x%29%2B7%28y%5E2-4y%29=-19\"\r\n" );
document.write( "\r\n" );
document.write( "To complete the squares, we need to add a number to the \r\n" );
document.write( "end of each parentheses, and to the right side:\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x%5E2-4x%2B%22___%22%29%2B7%28y%5E2-4y%2B%22___%22%29\"\"%22%22=%22%22\"\"-19%2B%22___%22%2B%22___%22\"\r\n" );
document.write( "so we put a blank where we need to add numbers.\r\n" );
document.write( "\r\n" );
document.write( "To complete the square in the first parentheses:\r\n" );
document.write( "\r\n" );
document.write( "1.  Multiply the coefficient of x by \"1%2F2\":\r\n" );
document.write( "\r\n" );
document.write( "       \"-4%2A%281%2F2%29=-2\"\r\n" );
document.write( "\r\n" );
document.write( "2.  Square that result:\r\n" );
document.write( "\r\n" );
document.write( "       \"%28-2%29%5E2=4\"\r\n" );
document.write( "\r\n" );
document.write( "3.  Put that where the first blank is on the left side:\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x%5E2-4x%2B4%29%2B7%28y%5E2-4y%2B%22___%22%29\"\"%22%22=%22%22\"\"-19%2B%22___%22%2B%22___%22\"\r\n" );
document.write( "\r\n" );
document.write( "So we complete the square in the first parentheses by\r\n" );
document.write( "adding +4 inside the first parentheses\r\n" );
document.write( "which actually amounts to adding 3*4 or 12 to the left \r\n" );
document.write( "side because there is a 3 in front of the parentheses, so\r\n" );
document.write( "we must add 12 to the right side:\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x%5E2-4x%2B4%29%2B7%28y%5E2-4y%2B%22___%22%29\"\"%22%22=%22%22\"\"-19%2B12%2B%22___%22\"\r\n" );
document.write( "\r\n" );
document.write( "To complete the square in the second parentheses, since the \r\n" );
document.write( "coefficient of y in the second parentheses is the same as the \r\n" );
document.write( "coefficient of x in the first parentheses, we also put +4 in\r\n" );
document.write( "second blank on the left as well.\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x%5E2-4x%2B4%29%2B7%28y%5E2-4y%2B4%29\"\"%22%22=%22%22\"\"-19%2B12%2B%22___%22\"\r\n" );
document.write( "\r\n" );
document.write( "Since we complete the square in the second parentheses by adding +4 \r\n" );
document.write( "inside the second parentheses, that actually amounts to adding 7*4 \r\n" );
document.write( "or 28 to the left side because there is a 7 in front of the \r\n" );
document.write( "parentheses, so we must add 28 to the right side, so we put 28\r\n" );
document.write( "in the remaining blank on the right side:\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x%5E2-4x%2B4%29%2B7%28y%5E2-4y%2B4%29\"\"%22%22=%22%22\"\"-19%2B12%2B28\"\r\n" );
document.write( "\r\n" );
document.write( "We factor both parentheses as perfect squares of binomials,\r\n" );
document.write( "and combine the numbers on the right side:\r\n" );
document.write( "\r\n" );
document.write( "\"3%28x-2%29%5E2%2B7%28y-2%29%5E2=21\"\r\n" );
document.write( "\r\n" );
document.write( "Get a 1 on the right by dividing through by 21\r\n" );
document.write( "\r\n" );
document.write( "\"%283%28x-2%29%5E2%29%2F21%2B%287%28y-2%29%5E2%29%2F21=21%2F21\"\r\n" );
document.write( "\r\n" );
document.write( "Simplify.  \r\n" );
document.write( "\r\n" );
document.write( "\"%28x-2%29%5E2%2F7%2B%28y-2%29%5E2%2F3=1\"\r\n" );
document.write( "\r\n" );
document.write( "Since the largest denominator is under the term in\r\n" );
document.write( "x, the ellipse has a horizontal major axis.  So we\r\n" );
document.write( "compare it to:\r\n" );
document.write( "\r\n" );
document.write( "\"%28x-h%29%5E2%2Fa%5E2%2B%28y-k%29%5E2%2Fb%5E2=1\"\r\n" );
document.write( "\r\n" );
document.write( "\"h=2\", \"k=2\", \r\n" );
document.write( "\r\n" );
document.write( "\"a%5E2=7\" so \"a=sqrt%287%29=%222.6...%22\"\r\n" );
document.write( "\r\n" );
document.write( "\"b%5E2=3\" so \"a=sqrt%283%29=%221.7...%22\"\r\n" );
document.write( "\r\n" );
document.write( "Its center is at (h,k) = (2,2)\r\n" );
document.write( "\r\n" );
document.write( "Plot the center (2,2):\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Draw the major axis \"a=sqrt%287%29=%222.6...%22\" units both left and right\r\n" );
document.write( "of the center.\r\n" );
document.write( "Draw the minor axis \"b=sqrt%283%29=%221.7...%22\" units both above and below\r\n" );
document.write( "the center.\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The vertices are \"a=sqrt%287%29\" units right and left the center (2,2)\r\n" );
document.write( "\r\n" );
document.write( "So we add \"sqrt%287%29\" to the x-coordinate of the center.  So the \r\n" );
document.write( "right vertex is \"%28matrix%281%2C3%2C2%2Bsqrt%287%29%2C%22%2C%22%2C2%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "And we subtract \"sqrt%287%29\" from the y-coordinate of the center.  So the \r\n" );
document.write( "left vertex is \"%28matrix%281%2C3%2C2-sqrt%287%29%2C%22%2C%22%2C2%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "The covertices are \"b=sqrt%283%29\" units above and below the center (2,2)\r\n" );
document.write( "\r\n" );
document.write( "So we add \"sqrt%283%29\" to the y-coordinate of the center.  So the \r\n" );
document.write( "upper covertex is \"%28matrix%281%2C3%2C2%2C%22%2C%22%2C2%2Bsqrt%283%29%29%29\".\r\n" );
document.write( "\r\n" );
document.write( "And we subtract \"sqrt%283%29\" from the y-coordinate of the center.  \r\n" );
document.write( "So the lower covertex is \"%28matrix%281%2C3%2C2%2C%22%2C%22%2C2-sqrt%283%29%29%29\".\r\n" );
document.write( "\r\n" );
document.write( "Sketch in the ellipse:\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find the foci, we must calculate c, using the Pythagorean\r\n" );
document.write( "relationship \r\n" );
document.write( "\r\n" );
document.write( "\"c%5E2=a%5E2-b%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "\"c%5E2=%28sqrt%287%29%29%5E2-%28sqrt%283%29%29%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "\"c%5E2=7-3\"\r\n" );
document.write( "\r\n" );
document.write( "\"c%5E2=4\"\r\n" );
document.write( "\r\n" );
document.write( "\"c=2\"\r\n" );
document.write( "\r\n" );
document.write( "The foci are \"c=2\" units above and below the \r\n" );
document.write( "center (2,2)\r\n" );
document.write( "\r\n" );
document.write( "So we add \"c=2\" to the x-coordinate of the center\r\n" );
document.write( "\r\n" );
document.write( "So the right focus is (4,2)\r\n" );
document.write( "\r\n" );
document.write( "And we subtract \"c=2\" from the x-coordinate of \r\n" );
document.write( "the center.\r\n" );
document.write( "\r\n" );
document.write( "So the left focus is (0,2)\r\n" );
document.write( "\r\n" );
document.write( "We plot the two foci:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( ")}}}\r\n" );
document.write( "\r\n" );
document.write( "Finally we draw in the two latus rectums:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find the endpoints of the two latus rectums, we substitute\r\n" );
document.write( "the x-coordinates of the foci in the original equation:\r\n" );
document.write( "\r\n" );
document.write( "3x²+7y²-12x-28y+19 = 0\r\n" );
document.write( "\r\n" );
document.write( "Substituting x=0, the x-coordinate of the left focus:\r\n" );
document.write( "\r\n" );
document.write( "3(0)²+7y²-12(0)-28y+19 = 0\r\n" );
document.write( "\r\n" );
document.write( "7y²-28y+19 = 0\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%28-b+%2B-+sqrt%28+b%5E2-4ac+%29%29%2F%282a%29+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%28-%28-28%29+%2B-+sqrt%28+%28-28%29%5E2-4%287%29%2819%29+%29%29%2F%282%287%29%29+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%2828+%2B-+sqrt%28784-532+%29%29%2F14+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%2828+%2B-+sqrt%28252%29%29%2F14+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%2828+%2B-+sqrt%2836%2A7%29%29%2F14+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%2828+%2B-+6sqrt%287%29%29%2F14+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%282%2814+%2B-+3sqrt%287%29%29%29%2F14+\"\r\n" );
document.write( "\r\n" );
document.write( "\"y\"\"%22%22=%22%22\"\"%2814+%2B-+3sqrt%287%29%29%2F7+\"\r\n" );
document.write( "\r\n" );
document.write( "So the endpoints of the left latus rectum are\r\n" );
document.write( "\r\n" );
document.write( "\"%28matrix%281%2C3%2C0%2C%22%2C%22%2C%2814+%2B-+3sqrt%287%29%29%2F7%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "By symmetry, the endpoints of the right latus rectum are\r\n" );
document.write( "\r\n" );
document.write( "\"%28matrix%281%2C3%2C4%2C%22%2C%22%2C%2814+%2B-+3sqrt%287%29%29%2F7%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "To find the directrices, we determine the eccentricity e\r\n" );
document.write( "by the formula \r\n" );
document.write( "\r\n" );
document.write( "\"e\"\"%22%22=%22%22\"\"c%2Fa\"\"%22%22=%22%22\"\"2%2Fsqrt%287%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"%22%22=%22%22\"\"e\"\"%22%22=%22%22\"\"2%2Fsqrt%287%29\"\r\n" );
document.write( "\r\n" );
document.write( "The distance from the focus to the endpoint of the latus rectum is \"sqrt%287%29\"\r\n" );
document.write( "So the above becomes:\r\n" );
document.write( "\r\n" );
document.write( "\"%22%22=%22%22\"\"2%2Fsqrt%287%29\"\r\n" );
document.write( "\r\n" );
document.write( "Take reciprocals of both sides:\r\n" );
document.write( "\r\n" );
document.write( "\"%22%22=%22%22\"\"sqrt%287%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "Multiply both sides by \"sqrt%287%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"%22%22=%22%22\"\"7%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "To find the right directrix, we add \"7%2F2\" to the x-coordinate of\r\n" );
document.write( "the right focus and get \"4%2B7%2F2\" or \"15%2F2\" or 7.5.  So the\r\n" );
document.write( "right directrix is the vertical line whose equation is \"x=15%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "To find the left directrix, we subtract \"7%2F2\" to the x-coordinate of\r\n" );
document.write( "the left focus and get \"0-7%2F2\" or \"-7%2F2\" or -3.5.  So the\r\n" );
document.write( "left directrix is the vertical line whose equation is \"x=-7%2F2\".\r\n" );
document.write( "They are the blue lines below:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );