document.write( "Question 1044328: a right circular cone has an altitude of 25 cm and a base diameter of 20cm rest on the top of a right circular cylinder of the same base and 30cm high.\r
\n" );
document.write( "\n" );
document.write( "a) Find the total volume of the composite figure.
\n" );
document.write( "b) Find the total surface area of the composite figure. \n" );
document.write( "
Algebra.Com's Answer #659667 by addingup(3677)![]() ![]() You can put this solution on YOUR website! The cylinder: \n" ); document.write( "20 diameter \n" ); document.write( "30 height \n" ); document.write( "Volume: \n" ); document.write( "[Pi(20/2)^2]*30 = 9424.78 \n" ); document.write( "Area, assuming the cylinder has a base (not an open hole): \n" ); document.write( "Area base: Pi(20/2)^2 = 314.16 \n" ); document.write( "Area of the side: \n" ); document.write( "(Pi*20)*30 = 1884.9 \n" ); document.write( "So, for the cylinder we have: \n" ); document.write( "total volume = 9424.78 \n" ); document.write( "total area = 314.16+1884.9 = 2199.06 \n" ); document.write( "----------------------------- \n" ); document.write( "The cone: \n" ); document.write( "Height of 25 cm and a base diameter of 20cm \n" ); document.write( "Volume: \n" ); document.write( "[Pi(20/2)^2]*25/3 = 2617.99 \n" ); document.write( "Area, assuming the cone is connected to the cylinder so it has no base: \n" ); document.write( "Pi(20/2)(20/2+sqrt(25^2+(20/10)^2 = 1102.07 \n" ); document.write( "Add the cone to the cylinder: \n" ); document.write( "Volume cylinder 9424.78+2617.99 cone = 12,042.77 \n" ); document.write( "Area cylinder 2199.06+1102.07 cone = 3301.13 \n" ); document.write( ": \n" ); document.write( "John \n" ); document.write( " |