document.write( "Question 1044337: Find the Maximum rectangular area that can be enclosed by a fence that is 224 m. Show your solution \n" ); document.write( "
Algebra.Com's Answer #659641 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find the Maximum rectangular area that can be enclosed by a fence that is 224 m. Show your solution
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Let x be the length of the rectangle and y be its width.\r\n" );
document.write( "\r\n" );
document.write( "Then  x + y = \"224%2F2\" = 112,  and you are asked to find  x  and  y  in a way \r\n" );
document.write( "to maximize the product  x*y  which is the area.\r\n" );
document.write( "\r\n" );
document.write( "Express  y  via  x:  y = 112 - x,  and substitute it into the product:\r\n" );
document.write( "\r\n" );
document.write( "x*y = x*(112-x).\r\n" );
document.write( "\r\n" );
document.write( "Now find the maximum of the quadratic function  f(x) = x*(112-x) = \"-x%5E2+%2B+112x\".\r\n" );
document.write( "\r\n" );
document.write( "The maximum is the vertex at x = \"-b%2F2a\":\r\n" );
document.write( "\r\n" );
document.write( "x = \"%28-112%29%2F%28-2%29\" = 56.\r\n" );
document.write( "\r\n" );
document.write( "So, x = 56 feet. Then y = 112-x = 56 feet too, and the rectangle is actually a square.\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );