document.write( "Question 1044204: Points A, B and C are collinear. Point B is the midpoint of the line segment AC. Point D is a point not collinear with the other points for which DA=DB and DB=BC=10. Then DC is:
\n" ); document.write( "A) 20/✔️3
\n" ); document.write( "B) 10✔️2
\n" ); document.write( "C) 10✔️3
\n" ); document.write( "D) 20
\n" ); document.write( "E) 40/✔️3
\n" ); document.write( "

Algebra.Com's Answer #659480 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
Let y = distance of point D from segment AB.\r
\n" ); document.write( "\n" ); document.write( "Then \"5%5E2%2B+y%5E2+=+10%5E2\".\r
\n" ); document.write( "\n" ); document.write( "===> \"y%5E2+=+10%5E2+-+5%5E2\"\r
\n" ); document.write( "\n" ); document.write( "But also the distance of the foot of the perpendicular bisector of AB from point C is 5+10 = 15 units. Hence,\r
\n" ); document.write( "\n" ); document.write( "\"15%5E2+%2B+y%5E2+=+%28DC%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "===> \"15%5E2+%2B+10%5E2+-+5%5E2+=+%28DC%29%5E2\" ===> \"%28DC%29%5E2+=+300\"\r
\n" ); document.write( "\n" ); document.write( "===> \"DC+=+10sqrt%283%29\".
\n" ); document.write( "
\n" );