document.write( "Question 1044123: Is the following statement always, sometimes or never true? Justify your reasoning\r
\n" );
document.write( "\n" );
document.write( "there should be arrows above the letters\r
\n" );
document.write( "\n" );
document.write( " |u + v| > |u - v|\r
\n" );
document.write( "\n" );
document.write( "thanks \n" );
document.write( "
Algebra.Com's Answer #659375 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Let's set up some notation \n" ); document.write( "a,b,c,d are scalars \n" ); document.write( "u and v are vectors such that \n" ); document.write( "u = (a,b) \n" ); document.write( "v = (c,d)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So that means \n" ); document.write( "u+v = (a+c,b+d) \n" ); document.write( "u-v = (a-c,b-d)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now use the length of vector formula to get \n" ); document.write( "|u + v| = sqrt( (a+c)^2 + (b+d)^2 ) \n" ); document.write( "|u + v| = sqrt( a^2+2ac+c^2 + b^2+2bd+d^2 )\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and this as well \n" ); document.write( "|u - v| = sqrt( (a-c)^2 + (b-d)^2 ) \n" ); document.write( "|u - v| = sqrt( a^2-2ac+c^2 + b^2-2bd+d^2 )\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's go back to \n" ); document.write( "|u + v| > |u - v|\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Perform substitutions and then square both sides to get \n" ); document.write( "|u + v| > |u - v| \n" ); document.write( "sqrt( a^2+2ac+c^2 + b^2+2bd+d^2 ) > sqrt( a^2-2ac+c^2 + b^2-2bd+d^2 ) \n" ); document.write( "a^2+2ac+c^2 + b^2+2bd+d^2 > a^2-2ac+c^2 + b^2-2bd+d^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Things look messy, but we can subtract a^2, c^2, b^2 and d^2 from both sides to have those terms cancel out. We will be left with this\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2ac + 2bd > -2ac - 2bd\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "add 2ac and 2bd to both sides and you'll get\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2ac+2bd+2ac+2bd > 0 \n" ); document.write( "4ac+4bd > 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "which ultimately simplifies to ac+bd > 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So if |u+v| > |u-v|, where u and v are defined above, then ac+bd > 0. The same can be said in reverse as well. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "There are some cases where ac+bd > 0 is true. But it could be false as well. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For instance, if a = 2, b = 3, c = 1 and d = 2, then the inequality would be true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Compare this to if a = 2, b = 3, c = -1 and d = -2, then the inequality would be false. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Side note: the inequality is only true if the angle between the vectors u and v is acute. If the angle is obtuse, then the inequality is false.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the final answer is sometimes \n" ); document.write( " \n" ); document.write( " |