document.write( "Question 1043447: If a is added to the difference of 2 quantities, the sum is b, and if the larger is divided by the smaller, the quotient is c. Determine quantities.\r
\n" );
document.write( "\n" );
document.write( "Let x = larger
\n" );
document.write( "Let y = smaller\r
\n" );
document.write( "\n" );
document.write( "My attempt:\r
\n" );
document.write( "\n" );
document.write( "x - y + a = b\r
\n" );
document.write( "\n" );
document.write( "x / y = c\r
\n" );
document.write( "\n" );
document.write( "How do I proceed ? \n" );
document.write( "
Algebra.Com's Answer #658587 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! x=cy from the second \n" ); document.write( "substitute into the first \n" ); document.write( "cy-y+a=b \n" ); document.write( "y(c-1)=b-a, moving the a \n" ); document.write( "y=(b-a)/(c-1), dividing both sides by (c-1) \n" ); document.write( "======================= \n" ); document.write( "substitute that into the first \n" ); document.write( "x-(b-a)/(c-1)=b-a \n" ); document.write( "add the second term to both sides \n" ); document.write( "x=(b-a)/(c-1)+(b-a) \n" ); document.write( "put it over a common denominator, multiplying (b-a)(c-1) to get bc-b-ac+a \n" ); document.write( "x=[1/(c-1)]{b-a+bc-b-ac+a}; the a and b cancel, and x=(bc-ac)/(c-1) \n" ); document.write( "x=c(b-a)/(c-1) \n" ); document.write( "Notice that x is cy \n" ); document.write( "================= \n" ); document.write( "Let x=10 \n" ); document.write( "y=5 \n" ); document.write( "a=3 \n" ); document.write( "10-5+3=8, so b=8 \n" ); document.write( "10/5=2, so c=2 \n" ); document.write( "See if the above formulae work \n" ); document.write( "For y=(b-a)/(c-1), we get (8-3)/(2-1), and that is 5. \n" ); document.write( "for x=c(b-a)/(c-1), we get 2(8-3)/(2-1)=10. \n" ); document.write( " |