document.write( "Question 1043415: Find a number x which, when added to each of the numbers 21, 27, and 29 in this order, produces three numbers which are in a geometric progression. \n" ); document.write( "
Algebra.Com's Answer #658555 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! 21, 27, 29 \n" ); document.write( ": \n" ); document.write( "use the definition for any term in a geometric progression \n" ); document.write( ": \n" ); document.write( "an = a0 * r^(n-1) \n" ); document.write( ": \n" ); document.write( "a0 = 21+x \n" ); document.write( ": \n" ); document.write( "1) a1 = 27+x = (21+x) * r \n" ); document.write( "2) a2 = 29+x = (21+x) * r^2 \n" ); document.write( ": \n" ); document.write( "solve equation 1 for r \n" ); document.write( ": \n" ); document.write( "r = (27+x) / (21+x) \n" ); document.write( ": \n" ); document.write( "substitute for r in equation 2 \n" ); document.write( ": \n" ); document.write( "29+x = (21+x) * (27+x)^2 / (21+x)^2 \n" ); document.write( ": \n" ); document.write( "29+x = (27+x)^2 / (21+x) \n" ); document.write( ": \n" ); document.write( "(29+x)*(21+x) = (27+x)^2 \n" ); document.write( ": \n" ); document.write( "x^2 +50x +609 = x^2 +54x +729 \n" ); document.write( ": \n" ); document.write( "4x = -120 \n" ); document.write( ": \n" ); document.write( "x = -30 \n" ); document.write( ": \n" ); document.write( "************************* \n" ); document.write( "we add -30 to each number \n" ); document.write( "-9, -3, -1 \n" ); document.write( "the common ratio is 1/3 \n" ); document.write( "************************* \n" ); document.write( ":\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |