document.write( "Question 1042857: a, b, n ∈ Z with n > 1. Prove that if a ≡ b (mod n) then 2a ≡ 2b (mod n). \n" ); document.write( "
Algebra.Com's Answer #657983 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
a congruent to b modulus n means that a-b is divisible by n
\n" ); document.write( ":
\n" ); document.write( "then we have
\n" ); document.write( ":
\n" ); document.write( "a - b = nc where c is an integer
\n" ); document.write( ":
\n" ); document.write( "then we have
\n" ); document.write( ":
\n" ); document.write( "a = b + nc
\n" ); document.write( ":
\n" ); document.write( "multiply both sides of the = by 2
\n" ); document.write( ":
\n" ); document.write( "2a = 2b + 2nc
\n" ); document.write( ":
\n" ); document.write( "we have a, b, n, c are integers, then
\n" ); document.write( ":
\n" ); document.write( "2c is an integer say p, then
\n" ); document.write( ":
\n" ); document.write( "***********************
\n" ); document.write( "2a = 2b + np = 2b mod n
\n" ); document.write( "We are done
\n" ); document.write( "***********************
\n" ); document.write( ":\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );