document.write( "Question 1042610: In how many ways can we pick a three-person committee from 7 people? \n" ); document.write( "
Algebra.Com's Answer #657593 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! There are 7 ways to fill slot A \n" ); document.write( "There are 6 ways to fill slot B (since we can't have any one person serve more than two posts) \n" ); document.write( "There are 5 ways to fill slot C\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "There are 7*6*5 = 42*5 = 210 different ways to fill the three slots (from a pool of 7). This is where order matters.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since we're talking about a committee, this means order doesn't matter. Any one member doesn't outrank the other. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since order doesn't matter, we have to divide by 6. Why 6? Because this is the number of ways to arrange 3 people. 3! = 3*2*1 = 6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "210/6 = 35\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The final answer is 35. There are 35 ways to pick three people from a pool of seven where order does NOT matter. \n" ); document.write( " |