document.write( "Question 1042312: determine the value of a so that the system
\n" );
document.write( "x+y-z=1
\n" );
document.write( "2x+3y+az=3
\n" );
document.write( "x+ay+3z=2
\n" );
document.write( " has
\n" );
document.write( "1)infinitely many solution
\n" );
document.write( "2)no solution
\n" );
document.write( "3)unique solution
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #657363 by ikleyn(52778)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "determine the value of a so that the system \n" ); document.write( " x + y - z = 1 \n" ); document.write( "2x + 3y + az = 3 \n" ); document.write( " x + ay + 3z = 2 \n" ); document.write( "has \n" ); document.write( "1)infinitely many solution \n" ); document.write( "2)no solution \n" ); document.write( "3)unique solution \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " x + y - z = 1, (1)\r\n" ); document.write( "2x + 3y + az = 3, (2)\r\n" ); document.write( " x + ay + 3z = 2. (3)\r\n" ); document.write( "\r\n" ); document.write( "One way is to calculate the determinant of the matrix on the left and equalize it to zero.\r\n" ); document.write( "But calculating the determinant of the 3x3 matrix was, probably, not what you were dreamed on.\r\n" ); document.write( "\r\n" ); document.write( "So, it is better to reduce the given 3x3 system to a 2x2 system first.\r\n" ); document.write( "How we will do it? But of course, by eliminating \"x\".\r\n" ); document.write( "\r\n" ); document.write( "So, multiply the equation (1) by 2 (both sides) and then distract it from the equation (2). You will get\r\n" ); document.write( "\r\n" ); document.write( "(3y-2y) + (az-(-2z)) = 3-2, or\r\n" ); document.write( "\r\n" ); document.write( "y + (a+2)z = 1. (4)\r\n" ); document.write( "\r\n" ); document.write( "Next, distract the equation (1) from the equation (3) (both sides). You will get\r\n" ); document.write( "\r\n" ); document.write( "(ay-y) + (3z - (-z)) = 2-1, or\r\n" ); document.write( "\r\n" ); document.write( "(a-1)y + 4z = 1. (5)\r\n" ); document.write( "\r\n" ); document.write( "Let us write the equations (4) and (5) as a system, one under another.\r\n" ); document.write( "\r\n" ); document.write( " y + (a+2)z = 1. (4')\r\n" ); document.write( "(a-1)y + 4z = 1. (5')\r\n" ); document.write( "\r\n" ); document.write( "This system is equivalent to (1)-(3) in the obvious sense.\r\n" ); document.write( "\r\n" ); document.write( "Now the determinant of the matrix on the left is \r\n" ); document.write( "\r\n" ); document.write( "det(A) = 4 - (a+2)*(a-1) =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |