document.write( "Question 1041799: With a radius of 1,429.25\" what is the rise and arc length for a cord length of 60\"? Thanks in Advance.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #657289 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
So form a isosceles triangle with two sides 1429.25 and the remaining side equal to 60.
\n" ); document.write( "The vertex angle would then,
\n" ); document.write( "\"sin%28theta%2F2%29=%2860%2F2%29%2F1429.25\"
\n" ); document.write( "\"sin%28theta%2F2%29=0.02099\"
\n" ); document.write( "\"theta%2F2=1.20272\"
\n" ); document.write( "\"theta=2.4054\"
\n" ); document.write( "or in radians,
\n" ); document.write( "\"theta=0.04198\"
\n" ); document.write( "So then the arc length is
\n" ); document.write( "\"S=R%2Atheta\"
\n" ); document.write( "\"S=1429.25%2A.04198\"
\n" ); document.write( "\"S=60.0\"\"inches\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "If we split the isosceles triangle into two equal right triangles, we can find the length of the other leg.
\n" ); document.write( "\"%2860%2F2%29%5E2%2BL%5E2=1429.25%5E2\"
\n" ); document.write( "\"L=1428.935\"
\n" ); document.write( "So then the rise, Z, is equal to this leg subtracted from the radius,
\n" ); document.write( "\"Z=1429.25-1428.935\"
\n" ); document.write( "\"Z=0.31\"
\n" ); document.write( "
\n" );