\r\n" );
document.write( "This double integral is over the unit circle, from the\r\n" );
document.write( "lower unit semicircle
to the upper unit \r\n" );
document.write( "semicircle
, so we convert, using
, \r\n" );
document.write( "and we get:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The radius r goes from the origin (the pole) where r is 0\r\n" );
document.write( "out to the circumference of the unit circle, where r is 1. \r\n" );
document.write( "Then the angle q goes around from 0 to 2p . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Use this taken from a table of integral, to save you\r\n" );
document.write( "from having to integrate it by parts:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "to complete the evaluation. If you have trouble, tell\r\n" );
document.write( "me in the thank-you note form below and I'll get back\r\n" );
document.write( "to you by email.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "