document.write( "Question 1041277: Can u help me factorise this
\n" );
document.write( "2^3x+2y + 2^4+y.3-2^y - 6 \n" );
document.write( "
Algebra.Com's Answer #656246 by AnlytcPhil(1806)![]() ![]() You can put this solution on YOUR website! I'm thinking the x on the first term may have been a typo\r\n" ); document.write( "and you meant this:\r\n" ); document.write( "\r\n" ); document.write( "23+2y + 24+y∙3 - 2y - 6\r\n" ); document.write( "\r\n" ); document.write( "If so then out of the first two terms,\r\n" ); document.write( "factorise out the smaller power of 2 factor, \r\n" ); document.write( "which is 24+y by subtracting the\r\n" ); document.write( "exponents: 24+y(2(3+2y)-(4+y)+3) = 24+y(23+2y-4-y+3) = 24+y(2y-1+3) \r\n" ); document.write( "\r\n" ); document.write( "24+y(2y-1+3) - 2y - 6\r\n" ); document.write( " \r\n" ); document.write( "Out of the last two terms factorize out -2 which is the same\r\n" ); document.write( "as 21. We do this also by subtracting exponents:\r\n" ); document.write( "-2y-6 = -21(2y-1+3) = -2(2y-1+3).\r\n" ); document.write( "Now we have:\r\n" ); document.write( "\r\n" ); document.write( "24+y(2y-1+3) - 2(2y-1+3).\r\n" ); document.write( "\r\n" ); document.write( "Now there is a common factor of (2y-1+3).\r\n" ); document.write( "Factorizing it out on the right, we have:\r\n" ); document.write( "\r\n" ); document.write( "(24+y - 2)(2y-1+3)\r\n" ); document.write( "\r\n" ); document.write( "Finally we can factorize out 2 from the first parentheses\r\n" ); document.write( "by subtracting exponents: 21(24+y-1 - 1) = 21(23+y - 1) = 2(23+y - 1) \r\n" ); document.write( "\r\n" ); document.write( "2(23+y - 1)(2y-1+3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Edwin\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |