document.write( "Question 1041047: Note that ‘->’ is used for conditionals, ‘~’ is used for negations, ‘v’ is used for disjunctions, ‘&’ is used for conjunctions, ‘<->’ is used for biconditionals, and ‘/’ is used as the conclusion indicator.\r
\n" );
document.write( "\n" );
document.write( "Prove the following three arguments to be valid using the method of Natural Deduction. Do not use Conditional Proof in these proofs.\r
\n" );
document.write( "\n" );
document.write( "1. ~(P v Q)
\n" );
document.write( "2. (R v S) -> P / ~S \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1. P v (Q v R)
\n" );
document.write( "2. (~T & ~R) / (Q v P)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1. (P v Q) -> R
\n" );
document.write( "2. (S v R) -> T
\n" );
document.write( "3. ~(Q -> E) / T \n" );
document.write( "
Algebra.Com's Answer #656058 by robertb(5830)![]() ![]() You can put this solution on YOUR website! 1. ~(P v Q) \n" ); document.write( "2. (R v S) -> P / ~S \n" ); document.write( "3. ~P&~Q ............De Morgan's \n" ); document.write( "4. ~P .............Simplification \n" ); document.write( "5. ~(R v S) v P .....Material implication on 2 \n" ); document.write( "6. ~(R v S) v ~~P ....Double negation \n" ); document.write( "7. ~(R v S) .........Disjunctive syllogism on 4 and 6 \n" ); document.write( "8. ~R&~S ...........De Morgan's on 7 \n" ); document.write( "9. ~S ...............Sinplification\r \n" ); document.write( "\n" ); document.write( "----------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1. P v (Q v R) \n" ); document.write( "2. (~T & ~R) / (Q v P) \n" ); document.write( "3. ~R .............Simplification on 2. \n" ); document.write( "4. ( P v Q) v R .... Associativity on 1 \n" ); document.write( "5. P v Q ..........Disjunctive syllogism on 3 and 4 \n" ); document.write( "6. Q v P ............Commutativity\r \n" ); document.write( "\n" ); document.write( "-----------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1. (P v Q) -> R \n" ); document.write( "2. (S v R) -> T \n" ); document.write( "3. ~(Q -> E) / T \n" ); document.write( "4. ~(P v Q) v R .......MI on 1 \n" ); document.write( "5. (~P & ~Q) v R ......Dl on 4 \n" ); document.write( "6. (~P v R) & (~Q v R) ...Distributivity on 5 \n" ); document.write( "7. ~(S v R) v T .......MI on 2 \n" ); document.write( "8. (~S & ~R) v T ......Dl on 7 \n" ); document.write( "9. (~S v T) & (~R v T) ...Distributivity on 5 \n" ); document.write( "10. ~Q v R .............simplification on 6 \n" ); document.write( "11. Q -> R ............MI on 10 \n" ); document.write( "12. ~R v T .............simplification on 9 \n" ); document.write( "13. R -> T ............MI on 12 \n" ); document.write( "14. Q -> T ............hypothetical syllogism on 11 and 13 \n" ); document.write( "15. ~Q v T ............MI on 14. \n" ); document.write( "16. ~(~Q v E) .........MI on 3. \n" ); document.write( "17.~~Q & ~E ............distribution \n" ); document.write( "18. Q & ~E ............double negation \n" ); document.write( "19. Q .................simplification on 18 \n" ); document.write( "20. ~~Q .............DN \n" ); document.write( "21. T ...............disjunctive syllogism on 15 and 20.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |