document.write( "Question 1040725: Prove that √i = (1+i)/√2 \n" ); document.write( "
Algebra.Com's Answer #655627 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
an imaginary number can be represented by a+bi where a and b are real numbers, then
\n" ); document.write( ":
\n" ); document.write( "(a+bi)^2 = i
\n" ); document.write( ":
\n" ); document.write( "(a^2 - b^2) + (2ab)i = 0 + 1i
\n" ); document.write( ":
\n" ); document.write( "note that i^2 = -1
\n" ); document.write( ":
\n" ); document.write( "now equate the real and imaginary parts and we have
\n" ); document.write( ":
\n" ); document.write( "1) a^2 - b^2 = 0
\n" ); document.write( "2) 2ab = 1
\n" ); document.write( ":
\n" ); document.write( "a^2 - b^2 = 0 means that a = + or - b
\n" ); document.write( ":
\n" ); document.write( "if a = -b then equation 2 becomes -2b^2 = 1, this can not be solve for b a real number
\n" ); document.write( ":
\n" ); document.write( "so we use a = b and equation 2 becomes 2a^2 = 1 and a = b = 1/square root(2) or a = b = -1/square root(2)
\n" ); document.write( ":
\n" ); document.write( "*************************************************************************
\n" ); document.write( "therefore
\n" ); document.write( ":
\n" ); document.write( "a+bi = (1/square root(2)) + (1/square root(2))i = (1/square root(2))(1+i)
\n" ); document.write( ":
\n" ); document.write( "a+bi = (-1/square root(2))(1+i)
\n" ); document.write( "*************************************************************************
\n" ); document.write( "note that there are two answers to the square root(i)
\n" ); document.write( ":
\n" ); document.write( "
\n" );