document.write( "Question 1040725: Prove that √i = (1+i)/√2 \n" ); document.write( "
Algebra.Com's Answer #655627 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! an imaginary number can be represented by a+bi where a and b are real numbers, then \n" ); document.write( ": \n" ); document.write( "(a+bi)^2 = i \n" ); document.write( ": \n" ); document.write( "(a^2 - b^2) + (2ab)i = 0 + 1i \n" ); document.write( ": \n" ); document.write( "note that i^2 = -1 \n" ); document.write( ": \n" ); document.write( "now equate the real and imaginary parts and we have \n" ); document.write( ": \n" ); document.write( "1) a^2 - b^2 = 0 \n" ); document.write( "2) 2ab = 1 \n" ); document.write( ": \n" ); document.write( "a^2 - b^2 = 0 means that a = + or - b \n" ); document.write( ": \n" ); document.write( "if a = -b then equation 2 becomes -2b^2 = 1, this can not be solve for b a real number \n" ); document.write( ": \n" ); document.write( "so we use a = b and equation 2 becomes 2a^2 = 1 and a = b = 1/square root(2) or a = b = -1/square root(2) \n" ); document.write( ": \n" ); document.write( "************************************************************************* \n" ); document.write( "therefore \n" ); document.write( ": \n" ); document.write( "a+bi = (1/square root(2)) + (1/square root(2))i = (1/square root(2))(1+i) \n" ); document.write( ": \n" ); document.write( "a+bi = (-1/square root(2))(1+i) \n" ); document.write( "************************************************************************* \n" ); document.write( "note that there are two answers to the square root(i) \n" ); document.write( ": \n" ); document.write( " |