document.write( "Question 1040514: The hypotenuse of a right triangle is 12 inches and the area is 24 square inches. Find the dimension of the triangle, correct to one decimal place. \n" ); document.write( "
Algebra.Com's Answer #655323 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
The hypotenuse of a right triangle is 12 inches and the area is 24 square inches. Find the dimension of the triangle, correct to one decimal place.
\n" ); document.write( "==========
\n" ); document.write( "Area = b*h/2 = 24
\n" ); document.write( "Using 12 for the base, h = 4.
\n" ); document.write( "The altitude from the right angle = 4.
\n" ); document.write( "-------
\n" ); document.write( "Label the 2 parts of the base c & d, and the 2 sides e & f
\n" ); document.write( "c + d = 12
\n" ); document.write( "e^2 - c^2 = 16
\n" ); document.write( "f^2 - d^2 = 16
\n" ); document.write( "e^2 + f^2 = 12^2
\n" ); document.write( "------
\n" ); document.write( "Sub for c: c = 12 - d
\n" ); document.write( "e^2 - d^2 + 24d - 144 = 16
\n" ); document.write( "e^2 = d^2 - 24d + 160
\n" ); document.write( "---
\n" ); document.write( "Sub for f: f^2 = d^2 + 16
\n" ); document.write( "e^2 + d^2 + 16 = 144
\n" ); document.write( "--> e^2 = 128 - d^2
\n" ); document.write( "----
\n" ); document.write( "128 - d^2 = d^2 - 24d + 160
\n" ); document.write( "2d^2 - 24d + 32 = 0
\n" ); document.write( "d^2 - 12d + 16 = 0
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"1x%5E2%2B-12x%2B16+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-12%29%5E2-4%2A1%2A16=80\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=80 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28--12%2B-sqrt%28+80+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%28-12%29%2Bsqrt%28+80+%29%29%2F2%5C1+=+10.4721359549996\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%28-12%29-sqrt%28+80+%29%29%2F2%5C1+=+1.52786404500042\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"1x%5E2%2B-12x%2B16\" can be factored:
\n" ); document.write( " \"1x%5E2%2B-12x%2B16+=+%28x-10.4721359549996%29%2A%28x-1.52786404500042%29\"
\n" ); document.write( " Again, the answer is: 10.4721359549996, 1.52786404500042.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+1%2Ax%5E2%2B-12%2Ax%2B16+%29\"

\n" ); document.write( "\n" ); document.write( "=================
\n" ); document.write( "The 2 solutions are c & d. Their sum is 12, the hypotenuse.
\n" ); document.write( "6 + sqrt(20) and 6 - sqrt(20)
\n" ); document.write( "---------
\n" ); document.write( "e^2 = c^2 + 16
\n" ); document.write( "= 36 + 20 + 12sqrt(20)
\n" ); document.write( "\"e+=+sqrt%2856+%2B+12sqrt%2820%29%29\"
\n" ); document.write( "\"f+=+sqrt%2856+-+12sqrt%2820%29%29\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );