document.write( "Question 1036471: All the edges of a regular triangular pyramid are x units long. Find the volume of the pyramid in terms of x. In the end, a formula for volume should result. Show the steps taken to get to this formula. \n" ); document.write( "
Algebra.Com's Answer #651181 by ikleyn(52946)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "All the edges of a regular triangular pyramid are x units long. Find the volume of the pyramid in terms of x.
\n" ); document.write( "In the end, a formula for volume should result. Show the steps taken to get to this formula.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( "\n" ); document.write( "

\n" ); document.write( "Solution\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The base area of the given tetrahedron is the area of the equilateral triangle with                    \r
\n" ); document.write( "\n" ); document.write( "the side measure x.  So,  the base area is equal to  \"S%5Bbase%5D\" = \"1%2F2\".\"x\".\"x\"\"sqrt%283%29%2F2\" = \"%28x%5E2%2Asqrt%283%29%29%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Next,  let us find the measure of the height of the given tetrahedron  (Figure 1b).\r
\n" ); document.write( "\n" ); document.write( "The height  OP  of the given tetrahedron drops to the center  O  of its base,  which \r
\n" ); document.write( "\n" ); document.write( "is the intersection point of the base altitudes,  medians and angle bisectors. \r
\n" ); document.write( "\n" ); document.write( "It is well known fact of  Planimetry  that the intersection point of medians of a \r
\n" ); document.write( "\n" ); document.write( "triangle divides them in proportion  2:1  counting from the vertices  (see the lesson \r
\n" ); document.write( "\n" ); document.write( "Medians of a triangle are concurrent  in this site). \r
\n" ); document.write( "\n" ); document.write( "

\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "    Figure 1a. \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( "\n" ); document.write( "

\n" ); document.write( "Thus the segment  OA  in  Figure 1b  has the length of two third of the altitude \r
\n" ); document.write( "\n" ); document.write( "of the base triangle,  i.e.  |OA| = \"2%2F3\".\"%28x%2Asqrt%283%29%29%2F2\" = \"%28x%2Asqrt%283%29%29%2F3\".\r
\n" ); document.write( "\n" ); document.write( "Now,  the height of the pyramid is  \"h\" = \"sqrt%28abs%28AP%29%5E2+-+abs%28OP%29%5E2%29\" = \"sqrt%28x%5E2+-+%28x%2Asqrt%283%29%2F3%29%5E2%29\" = \"x%2Asqrt%281+-+1%2F3%29\" = \"%28x%2Asqrt%282%29%29%2Fsqrt%283%29\",        \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and the volume of our tetrahedron is  \"V\" = \"1%2F3\".\"S%5Bbase%5D\".\"h\" = \"1%2F3\".\"%28x%5E2%2Asqrt%283%29%29%2F4\".\"%28x%2Asqrt%282%29%29%2Fsqrt%283%29\" = \"%28x%5E3%2Asqrt%282%29%29%2F12\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer.  The volume of the regular tetrahedron with the edge length x is   \"%28x%5E3%2Asqrt%282%29%29%2F12\".\r
\n" ); document.write( "\n" ); document.write( "

\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "    Figure 1b. \r
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );