Algebra.Com's Answer #651181 by ikleyn(52946)  You can put this solution on YOUR website! . \n" );
document.write( "All the edges of a regular triangular pyramid are x units long. Find the volume of the pyramid in terms of x. \n" );
document.write( "In the end, a formula for volume should result. Show the steps taken to get to this formula. \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \n" );
document.write( "Solution\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "The base area of the given tetrahedron is the area of the equilateral triangle with \r \n" );
document.write( "\n" );
document.write( "the side measure x. So, the base area is equal to = . . = .\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Next, let us find the measure of the height of the given tetrahedron (Figure 1b).\r \n" );
document.write( "\n" );
document.write( "The height OP of the given tetrahedron drops to the center O of its base, which \r \n" );
document.write( "\n" );
document.write( "is the intersection point of the base altitudes, medians and angle bisectors. \r \n" );
document.write( "\n" );
document.write( "It is well known fact of Planimetry that the intersection point of medians of a \r \n" );
document.write( "\n" );
document.write( "triangle divides them in proportion 2:1 counting from the vertices (see the lesson \r \n" );
document.write( "\n" );
document.write( "Medians of a triangle are concurrent in this site). \r \n" );
document.write( "\n" );
document.write( " | \r\n" );
document.write( " \n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Figure 1a. \r \n" );
document.write( "\n" );
document.write( " | \r\n" );
document.write( " \r\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \n" );
document.write( "Thus the segment OA in Figure 1b has the length of two third of the altitude \r \n" );
document.write( "\n" );
document.write( "of the base triangle, i.e. |OA| = . = .\r \n" );
document.write( "\n" );
document.write( "Now, the height of the pyramid is = = = = , \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "and the volume of our tetrahedron is = . . = . . = . \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Answer. The volume of the regular tetrahedron with the edge length x is .\r \n" );
document.write( "\n" );
document.write( " | \r\n" );
document.write( " \n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Figure 1b. \r \n" );
document.write( "\n" );
document.write( " | \r\n" );
document.write( " \r\n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |