document.write( "Question 89562: The length of a rectangle is 2 cm more than 5 times its width. If the area of the rectangle is 65 cm2, find the dimensions of the rectangle to the nearest thousandth\r
\n" );
document.write( "\n" );
document.write( "Hint: Call the width x. Then the length is 5x + 2. Now write your equation and solve. \n" );
document.write( "
Algebra.Com's Answer #65101 by checkley75(3666)![]() ![]() ![]() You can put this solution on YOUR website! L=5W+2 & THE AREA=W(5W+2) \n" ); document.write( "5W^2+2W=65 \n" ); document.write( "5W^2+2W-65=0 \n" ); document.write( "USING THE QUADRATIC EQUATION WE GET: \n" ); document.write( "X=(-2+-SQRT[2^2-4*5*-65])/2*5 \n" ); document.write( "X=(-2+-SQRT[4+1300])/10 \n" ); document.write( "X=(-2+-SQRT1304)/10 \n" ); document.write( "X=(-2+-36.11)/10 \n" ); document.write( "X=(-2+36.11)/10 \n" ); document.write( "X=34.11)/10 \n" ); document.write( "X=3.41 ANSWER FOR THE WIDTH. \n" ); document.write( "L=5*3.41+2 \n" ); document.write( "L=17.05+2 \n" ); document.write( "L=19.05 ANSWER FOR THE LENGTH. \n" ); document.write( "PROOF \n" ); document.write( "19.05*3.41=65 \n" ); document.write( "65=65 \n" ); document.write( " |