document.write( "Question 1036260: Identify the properties of operations/ relations being illustrated:
\n" ); document.write( "a) 3∙(x∙5)=(x∙5)∙3
\n" ); document.write( "b) (a+b)+0=a+b
\n" ); document.write( "c) If a is a real number, then a + 8 is a real number
\n" ); document.write( "d) If a + b = c – d and c – d = e, then a + b = e.
\n" ); document.write( "e) √3+(-√3)=0
\n" ); document.write( "f) (a+b)∙(x-y)=a∙(x-y)+b∙(x-y)
\n" ); document.write( "g) (x+5)∙(y-3)=(y-3)∙(x+5)
\n" ); document.write( "h) (2r+3s)+4t=2r+(3s+4t)
\n" ); document.write( "i) 5=5
\n" ); document.write( "j) If a + 4 = b – 1, then b – 1 = a + 4.\r
\n" ); document.write( "\n" ); document.write( "Operations: Closure, Commutativity, associativity, identity, inverse
\n" ); document.write( "Relations: transitive, reflexive, symmetric
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #650919 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
a) 3∙(x∙5)=(x∙5)∙3 --->Commutativity
\n" ); document.write( "b) (a+b)+0=a+b --->additive identity
\n" ); document.write( "c) If a is a real number, then a + 8 is a real number ---> Closure
\n" ); document.write( "d) If a + b = c – d and c – d = e, then a + b = e. ---> Transitive
\n" ); document.write( "e) √3+(-√3)=0 ---> additive inverse
\n" ); document.write( "f) (a+b)∙(x-y)=a∙(x-y)+b∙(x-y) ---> Distributivity
\n" ); document.write( "g) (x+5)∙(y-3)=(y-3)∙(x+5) ---> Commutativity
\n" ); document.write( "h) (2r+3s)+4t=2r+(3s+4t) ---> Associativity
\n" ); document.write( "i) 5=5 ---> Reflexive
\n" ); document.write( "j) If a + 4 = b – 1, then b – 1 = a + 4. --> Symmetric\r
\n" ); document.write( "\n" ); document.write( "Operations: Closure, Commutativity, associativity, identity, inverse
\n" ); document.write( "Relations: transitive, reflexive, symmetric
\n" ); document.write( "
\n" ); document.write( "
\n" );