document.write( "Question 1035355: write the equation.
\n" ); document.write( "1. hyperbola with foci (0,4) and (0,-4) and asymptotes at y=2x
\n" ); document.write( "2. circle passing through the points (12,1) and (2,-3) with center on the line 2x-5y+10=0
\n" ); document.write( "

Algebra.Com's Answer #650077 by KMST(5328)\"\" \"About 
You can put this solution on YOUR website!
1.The major axis is on the line connecting the foci, which is the y-axis.
\n" ); document.write( "The center of the hyperbola is halfway between the foci, at (0,0), the origin,
\n" ); document.write( "so the minor axis (perpendicular to the y-axis through the center) is the x-axis.
\n" ); document.write( "The equation for a parabola centered at the origin, with the y-axis as its major axis is
\n" ); document.write( "\"y%5E2%2Fa%5E2-x%5E2%2Fb%5E2=1\" with \"a%3E0\" and \"b%3E0\" .
\n" ); document.write( "The focal distance, \"c\" , is half the distance between the foci.
\n" ); document.write( "In this case, it is \"c=%284-%28-4%29%29%2F2=4\" .
\n" ); document.write( "The semimajor axis, \"a\" , is the distance between the center and each vertex.
\n" ); document.write( "The major axis is the vertical segment connecting vertices (0,-a), (0,a),
\n" ); document.write( "which are on the major axis, between the foci, so \"0%3Ca%3C4\" .
\n" ); document.write( "The semi-minor axis is \"b\" .
\n" ); document.write( "The asymptotes cross at the center of the hyperbola (in this case (0,0), the origin),
\n" ); document.write( "and have equations \"y=%28a%2Fb%29x\" and \"-%28a%2Fb%29x\" .
\n" ); document.write( "So far, we have
\n" ); document.write( "
\n" ); document.write( "The values \"a\" and \"b\" determine a rectangle,
\n" ); document.write( "passing through the vertices,
\n" ); document.write( "with sides measuring \"2a\" and \"2b\" ,
\n" ); document.write( "and diagonals measuring \"2c\" .
\n" ); document.write( "The axes and the asymptotes divide that rectangle into 8 right trianlges with legs \"a\" and \"b\" , and hypotenuse \"c\" , so
\n" ); document.write( "\"c%5E2=a%5E2%2Bb%5E2\" .
\n" ); document.write( "Since the asymptotes have equations \"y=2x\" and \"y=-2x\" ,
\n" ); document.write( "in this case \"a%2Fb=2\" --> \"a=2b\" --> \"a%5E2=4b%5E2\" ,
\n" ); document.write( "and since \"c=4\" ,
\n" ); document.write( "\"4%5E2=4b%5E2%2Bb%5E2\"
\n" ); document.write( "\"16=5b%5E2\"
\n" ); document.write( "\"b%5E2=16%2F5\"
\n" ); document.write( "\"a%5E2=4%2A16%2F5=64%2F5\" .
\n" ); document.write( "So, the equation for the hyperbola in this problem is
\n" ); document.write( "\"y%5E2%2F%2864%2F5%29-x%5E2%2F%2816%2F5%29=1\" ,
\n" ); document.write( "or \"y%5E2%2F12.8-x%5E2%2F3.2=1\" ,
\n" ); document.write( "or \"5y%5E2%2F64-5x%5E2%2F16=1\" ,
\n" ); document.write( "or \"y%5E2%2F64-c%5E2%2F16=1%2F5\" .
\n" ); document.write( "
\n" );