document.write( "Question 1035337: Find the max/min point for the following function:\r
\n" );
document.write( "\n" );
document.write( "f (x,y) = x^3 + y^3 + 6xy \n" );
document.write( "
Algebra.Com's Answer #650007 by robertb(5830)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "\n" ); document.write( "Also, \n" ); document.write( "\n" ); document.write( "Use the Second partial derivative test.\r \n" ); document.write( "\n" ); document.write( "Set the partial derivatives above to 0 and solve for x and y.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This system of equations yield two points as its solutions: (0,0) , (-2,-2). (Verify!!)\r \n" ); document.write( "\n" ); document.write( "Now find the determinant of the hessian for each point.\r \n" ); document.write( "\n" ); document.write( "For (0,0): \n" ); document.write( "\n" ); document.write( "This implies that the point (0,0) is a saddle point (neither a local max nor a local min).\r \n" ); document.write( "\n" ); document.write( "For (-2,-2): \n" ); document.write( "Since \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |