document.write( "Question 1035337: Find the max/min point for the following function:\r
\n" ); document.write( "\n" ); document.write( "f (x,y) = x^3 + y^3 + 6xy
\n" ); document.write( "

Algebra.Com's Answer #650007 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
\"f%28x%2Cy%29%5Bx%5D+=+3x%5E2%2B6y\" and \"f%28x%2Cy%29%5By%5D+=+3y%5E2%2B6x\".\r
\n" ); document.write( "\n" ); document.write( "Also, \"f%5Bxx%5D+=+6x\" and \"f%5Byy%5D+=+6y\", and \"f%5Bxy%5D=+f%5Byx%5D+=+6\"\r
\n" ); document.write( "\n" ); document.write( "Use the Second partial derivative test.\r
\n" ); document.write( "\n" ); document.write( "Set the partial derivatives above to 0 and solve for x and y.\r
\n" ); document.write( "\n" ); document.write( "\"3x%5E2%2B6y+=+0\" and \"+3y%5E2%2B6x+=+0\".\r
\n" ); document.write( "\n" ); document.write( "This system of equations yield two points as its solutions: (0,0) , (-2,-2). (Verify!!)\r
\n" ); document.write( "\n" ); document.write( "Now find the determinant of the hessian for each point.\r
\n" ); document.write( "\n" ); document.write( "For (0,0): \"f%5Bxx%5D%2Af%5Byy%5D+-+%28f%5Bxy%5D%29%5E2+=+0%2A0-6%5E2+=+-36+%3C+0\".\r
\n" ); document.write( "\n" ); document.write( "This implies that the point (0,0) is a saddle point (neither a local max nor a local min).\r
\n" ); document.write( "\n" ); document.write( "For (-2,-2): \"f%5Bxx%5D%2Af%5Byy%5D+-+%28f%5Bxy%5D%29%5E2+=+-12%2A-12-6%5E2+=+144-36+%3E+0\".
\n" ); document.write( "Since \"f%5Bxx%5D+%3C+0\", it follows that (-2,-2) is a local maximum.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );