document.write( "Question 1035225: 3.(S v T) v (U v W), therefore, (U v T) v (S v W) \n" ); document.write( "
Algebra.Com's Answer #649864 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
(S v T) v (U v W), therefore, (U v T) v (S v W)
\n" ); document.write( "
\r\n" );
document.write( "Proof, for clarity, let's change one of the sets of parentheses ()\r\n" );
document.write( "to brackets []:\r\n" );
document.write( "\r\n" );
document.write( "[S v T] v (U v W)\r\n" );
document.write( "\r\n" );
document.write( "S v [T v (U v W)]      associative law  <--moving the []s\r\n" );
document.write( "\r\n" );
document.write( "S v [(T v U) v W)]     associative law  <--moving the ()'s\r\n" );
document.write( "\r\n" );
document.write( "S v [(U v T) v W)]     commutative law  <--swapping U, T\r\n" );
document.write( "\r\n" );
document.write( "[(U v T) v W)] v S     commutative law  <--swapping the [], S\r\n" );
document.write( "\r\n" );
document.write( "(U v T) v [W v S]      associative law  <--moving the []'s\r\n" );
document.write( "\r\n" );
document.write( "(U v T) v [S v W]      commutative law  <--swapping S,W\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );