document.write( "Question 1035225: 3.(S v T) v (U v W), therefore, (U v T) v (S v W) \n" ); document.write( "
Algebra.Com's Answer #649864 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! (S v T) v (U v W), therefore, (U v T) v (S v W) \n" ); document.write( " \r\n" ); document.write( "Proof, for clarity, let's change one of the sets of parentheses ()\r\n" ); document.write( "to brackets []:\r\n" ); document.write( "\r\n" ); document.write( "[S v T] v (U v W)\r\n" ); document.write( "\r\n" ); document.write( "S v [T v (U v W)] associative law <--moving the []s\r\n" ); document.write( "\r\n" ); document.write( "S v [(T v U) v W)] associative law <--moving the ()'s\r\n" ); document.write( "\r\n" ); document.write( "S v [(U v T) v W)] commutative law <--swapping U, T\r\n" ); document.write( "\r\n" ); document.write( "[(U v T) v W)] v S commutative law <--swapping the [], S\r\n" ); document.write( "\r\n" ); document.write( "(U v T) v [W v S] associative law <--moving the []'s\r\n" ); document.write( "\r\n" ); document.write( "(U v T) v [S v W] commutative law <--swapping S,W\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |