document.write( "Question 1034961: ln(x^2+3x-4)-ln(x+14)=3 \n" ); document.write( "
Algebra.Com's Answer #649628 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
ln(x^2+3x-4)-ln(x+14)=3
\n" ); document.write( "ln(x^2+3x-4) = ln(x+14) + 3 = ln(x+14) + ln(e^3)
\n" ); document.write( "ln(x^2+3x-4) = ln(e^3*(x+14))
\n" ); document.write( "x^2+3x-4 = e^3*(x+14) = e^3x + 14e^3
\n" ); document.write( "x^2 + (3-e^3)x - (4+14e^3) = 0
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"1x%5E2%2B-17.0855369231877x%2B-285.1975+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-17.0855369231877%29%5E2-4%2A1%2A-285.1975=1432.70557195361\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=1432.70557195361 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28--17.0855369231877%2B-sqrt%28+1432.70557195361+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"1x%5E2%2B-17.0855369231877x%2B-285.1975\" can be factored:
\n" ); document.write( "
\n" ); document.write( " Again, the answer is: 27.4683171455397, -10.3827802223519.\n" ); document.write( "Here's your graph:
\n" ); document.write( "

\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );