document.write( "Question 89161This question is from textbook INTERMEDIATE ALGEBRA
\n" );
document.write( ": Use the Binomial Theorem to write out and simplify the first four terms in the expansion of the (2a+3b)^7. \r
\n" );
document.write( "\n" );
document.write( "Simplifying a term means to remove all parentheses and evaluate binomial coefficients. For example, the 3rd term of (2a+3b)^7 is given below in simplified form.
\n" );
document.write( "Third term = (7 over 2)(2a)^5(3b)^2=21*2^5a^5*2^2b^2= 6048a^5b^2
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #64822 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Use the Binomial Theorem to write out and simplify the first four terms in the expansion of the (2a+3b)^7. \n" ); document.write( "------------------- \n" ); document.write( "7C7(2a)^7 + 7C6(2a)^6(3b) + 7C5(2a)^5(3b)^2 + 7C4(2a)^4(3b)^3\r \n" ); document.write( "\n" ); document.write( "= 128a^7 + 7(64a^6)(3b) + 21(32a^5)(9b^2) + 35(16a^4)(27b^3)\r \n" ); document.write( "\n" ); document.write( "= 128a^7 + 1344a^6b + 6048a^5b^2 + 15120a^4b^3 \n" ); document.write( "============ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |